Bioinformatics inspiring peptides from toxins as a new alternative in obesity treatment

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.22057

Keywords:

animal venom, bioinspired peptides, rational design, inflammation, obesity.; Animal venom; Bioinspired peptides; Rational design; Inflammation; Obesity.

Abstract

Obesity is a nutritional disorder caused by the excessive accumulation of white adipose tissue (WAT) in the body, which is characterized by a high body mass index and interferes with the body's energy balance. Obesity is a major risk factor for a number of different diseases, such as type 2 diabetes, cardiovascular disease, hypertension, fatty liver disease and some malignant tumors. The treatment of obesity primarily focuses on diet and physical exercise; when lifestyle changes fail, drugs and surgery will be considered as treatment options. At present, a number of so‑called anti‑obesity drugs have been developed, which affect digestion and absorption. These drugs can produce significant weight loss in the individual; however, some patients are unwilling to receive this type of treatment, due to side effects such as insomnia, hypertension and dizziness. This perspective shows that rational design is an alternative methodology based on native bioactive molecules for the development of analogous compounds, improved from the point of view of efficiency and side effects. We also show that the modification of peptides from animal toxins can be an interesting alternative in the treatment of obesity, since peptides from toxins have already shown significant anti-inflammatory effects.

References

Ahmed, B., Sultana, R., & Greene, M. W. (2021). Adipose tissue and insulin resistance in obese. Biomedicine & Pharmacotherapy, 137, 111315. 10.1016/j.biopha.2021.111315

Al-Goblan, A. S., Al-Alfi, M. A., & Khan, M. Z. (2014). Mechanism linking diabetes mellitus and obesity. Diabetes, metabolic syndrome and obesity: targets and therapy, 7, 587. 10.2147/DMSO.S67400

Fosgerau, K., & Hoffmann, T. (2015). Peptide therapeutics: current status and future directions. Drug discovery today, 20(1), 122-128. 10.1016/j.drudis.2014.10.003

Friedman, J. (2016). The long road to leptin. The Journal of clinical investigation, 126(12), 4727-4734. 10.1172/JCI91578

Gao, Y., Yuan, X., Zhu, Z., Wang, D., Liu, Q., & Gu, W. (2020). Research and prospect of peptides for use in obesity treatment. Experimental and Therapeutic Medicine, 20(6), 1-1. 10.3892/etm.2020.9364

Hochberg, A., Patz, M., Karrasch, T., Schäffler, A., & Schmid, A. (2021). Serum levels and adipose tissue gene expression of cathelicidin antimicrobial peptide (CAMP) in obesity and during weight loss. Hormone and Metabolic Research, 53(03), 169-177. 10.1055/a-1323-3050

Irazazabal, L. N. (2016). Avaliação estrutural e funcional de novos peptídeos antimicrobianos obtidos a partir de desenho racional (Doctoral dissertation, Université Pierre et Marie Curie-Paris VI).

Kelly, A. S., Rudser, K. D., Nathan, B. M., Fox, C. K., Metzig, A. M., Coombes, B. J., & Abuzzahab, M. J. (2013). The effect of glucagon-like peptide-1 receptor agonist therapy on body mass index in adolescents with severe obesity: a randomized, placebo-controlled, clinical trial. JAMA pediatrics, 167(4), 355-360. 10.1001/jamapediatrics.2013.1045

Lopes, J. F., Matos, M. A., Magalhães, F. C., Esteves, E. A., Vieira, E. R., & Amorim, F. T. (2017). Efeito de mudanças graduais de exercício físico e dieta sobre a composição corporal de obesos. Arquivos de Ciências da Saúde, 24(1), 93-97. 10.17696/2318-3691.24.1.2017.442

Migliolo, L., Felício, M. R., Cardoso, M. H., Silva, O. N., Xavier, M. A. E., Nolasco, D. O., & Franco, O. L. (2016). Structural and functional evaluation of the palindromic alanine-rich antimicrobial peptide Pa-MAP2. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1858(7), 1488-1498. 10.1016/j.bbamem.2016.04.003

Moreno, M., & Giralt, E. (2015). Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins, 7(4), 1126-1150. 10.3390/toxins7041126

Schütz, F., Figueiredo-Braga, M., Barata, P., & Cruz-Martins, N. (2021). Obesity and gut microbiome: review of potential role of probiotics. Porto Biomedical Journal, 6(1). 10.1097/j.pbj.0000000000000111

Srivastava, G., & Apovian, C. (2018). Future pharmacotherapy for obesity: new anti-obesity drugs on the horizon. Current obesity reports, 7(2), 147-161.

Vancea, D. M. M. (2019). A influência do exercÃcio fÃsico e suas variá veis sobre os marcadores inflamatórios em adultos obesos: uma revisã o sistemá tica. RBPFEX-Revista Brasileira de Prescrição e Fisiologia do Exercício, 13(85), 852-861.

Wei, L., Yang, J., He, X., Mo, G., Hong, J., Yan, X., & Lai, R. (2013). Structure and function of a potent lipopolysaccharide-binding antimicrobial and anti-inflammatory peptide. Journal of Medicinal Chemistry, 56(9), 3546-3556. 10.1021/jm4004158

Downloads

Published

08/11/2021

How to Cite

BOLETI, A. P. de A.; RODRIGUES, T. A. A. .; BIEMBENGUTE, M. E. F. .; MUKOYAMA, L. T. H. .; MIGLIOLO, L. . Bioinformatics inspiring peptides from toxins as a new alternative in obesity treatment. Research, Society and Development, [S. l.], v. 10, n. 14, p. e432101422057, 2021. DOI: 10.33448/rsd-v10i14.22057. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22057. Acesso em: 21 dec. 2024.

Issue

Section

Note Preview