Social networks and bibliometrics on the use of UAVs in hydrological risk mapping in urban areas
DOI:
https://doi.org/10.33448/rsd-v10i14.22078Keywords:
Drones; Digital Elevation Model; Digital Surface Models; Photogrammetry; VOSViewer.Abstract
This study aims to carry out research in the Scopus and Web of Science databases in order to search for works related to water mapping with a focus on risk areas using UAVs. The VOSViewer software generates infographics based on the node system displaying the main search terms, authors, recurring elements and keywords. Quantitatively categorizing the works into collaborating authors, approach to the topic, types of publications, main journals, indexes, main countries, collaboration networks and keywords, he indicated the main works pertinent to the topic, in which these were discussed to verify how the topic is approached. 91.15% of the works are written in English, with the US being the second country that publishes the most about, in the rear of China. The main terms concatenated in the research are UAV - Unmanned Aerial Vehicles, Photogrammetry and DEM - Digital Elevation Model, which allude to the use of UAVs to obtain the MDE and MDS by the photogrammetric method. Among the works, 10 presented methodological material and promising results in the use of UAV ́ for hydrological risk mapping, with emphasis on the work of Mazzoleni, Muthusamy Annis, Luppichini, who present image processing software (Agisoft PhotoScan) and hydrodynamic simulations of water pluvial and fluvial (FLO-2D and HEC-RAS). Therefore, this study made it possible to recognize methodological approaches, trends, difficulties and the advantages of the UAV tool in technical application, such as high precision, relatively low cost and reach in areas of difficult access.
References
Abidin, K. H. Z. K. Z. Razi, M. A. M. Bukari, S. M. (2018). Analysis the Accuracy of Digital Elevation Model (DEM) for Flood Modelling on Lowland Area. In IOP Conference Series: Earth and Environmental Science, IOP Publishing. 140, 1, 012014. doi: 10.1088/1755-1315/140/1/012014
About ArcGIS. Mapping & Analytics Software and Services. 10.1 Version, 2012. Disponível em: https://www.esri.com/en-us/arcgis/about-arcgis/overview. Acessado em: 13 de jun de 2020.
Agência Nacional de Aviação Civil ANAC Regulamento Brasileiro (2018). Especial–RBAC–E nº 94. Requisitos Gerais para Aeronaves Não Tripuladas de Uso Civil. Resolução, n. 419. <https://www.anac.gov.br/assuntos/legislacao/legislacao-1/rbha-e-rbac/rbac/rbac-e-94-emd-01/@@display-file/arquivo_norma/RBACE94EMD01.pdf>
Agisoft LLC Agisoft PhotoScan User Manual Professional Edition, Version 1.5, 2018. Disponível em: https://www.agisoft.com/pdf/photoscan-pro_1_4_en.pdf. Acessado em: 11 de jun. 2020.
Annis, A.; Nardi, F.; Petroselli, A.; Apollonio, C.; Arcangeletti, E.; Tauro, F.; Grimaldi, S (2020). UAV-DEMs for small-scale flood hazard mapping. Water, 12(6), 1717. https://doi.org/10.3390/w12061717 Hardgrave, O. Pioneirismo com o Vant: Estados Unidos da América, 2005. http://www.ctie.monash.edu.au/hardgrave/
Batagelj, V.; Mrvar (2004). A Program for analysis and visualization of large networks. Ljubljana, Slovenia. http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/pajekman.htm>
Carrivick, J. L. Smith, M. W. Quincey, D. J (2016). Structure from Motion in the Geosciences. John Wiley & Sons. 1, 34. https://www.wiley.com/en-us/Structure+from+Motion+in+the+Geosciences-p-9781118895849
Cobo, M. J. López-Herrera, A. G. Herrera-Viedma, E. Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Tecnology, 63, 8, 1609-1630. https://doi.org/10.1002/asi.22688
Colomina, I. Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013
De Brum, C. B. Mauricio, M. Da Silva, R. O. Bastos, Y. (2019). In: Uso dos drones nos procedimentos civis e criminais no Brasil: considerações sob a ótica dos direitos fundamentais. Prudkin G, Breuning, FM (Org). – Santa Maria, RS: FACOS-UFMS. https://repositorio.ufsm.br/bitstream/handle/1/18774/DRONES%20e%20CIENCIA.pdf?sequence=1&isAllowed=y
DJI. Phantom User Manual, v1.1; DJI: Shenzhen, China, 2013. <https://www.dji.com/br/downloads/products/phantom>
Estatuto da Cidade (2001). Lei n. 10.257, de 10 de julho de 2001. Regulamenta os artigos, 182. http://www.planalto.gov.br/ccivil_03/leis/leis_2001/l10257.htm
FLO-2D Software FLO-2D Reference Manual; FLO-2D Software, Inc. P.O. AZ, USA, 2009. https://flo-2d.com/.
Gu, N. Feng, Z. K. Luo, X. (2007). Digital elevation model based on aerial UAV image. Beijing Linye Daxue Xuebao/Journal of Beijing Forestry University, 29, 152-155. http://caod.oriprobe.com/articles/25904714/Digital_elevation_model_based_on_aerial_UAV_image_.htm
Guerra, F. C. Zacharias, A. A. (2016). Mapeamento das áreas de riscos hidrológicos e as políticas públicas de sustentabilidade: o caso de Ourinhos/SP. Revista Nacional de Gerenciamento de Cidades, 4(26), 223 - 243. https://doi.org/10.17271/2318847242620161345
Heimhuber, V. Hannemann, J. C. Rieger, W. (2015). Flood risk management in remote and impoverished areas - A case study of Onaville, Haiti. Water. 7(7), 3832-3860. https://doi.org/10.3390/w7073832
Leitão, J. P. Moy de Vitry, M. Scheidegger, A. Rieckermann, J. (2016). Assessing the quality of digital elevation models obtained from mini unmanned aerial vehicles for overland flow modelling in urban areas. Hydrology and Earth System Sciences, 20(4), 1637-1653. https://doi.org/10.5194/hess-20-1637-2016
Luppichini, M. Favalli, M. Isola, I. Nannipieri, L. Giannecchini, R. Bini, M. (2019). Influence of topographic resolution and accuracy on hydraulic channel flow simulations: case study of the Versilia River (Italy). Remote Sensing, 11(13), 1630. https://doi.org/10.3390/rs11131630
Mazzoleni, M.; Paron, P.; Reali, A.; Juizo, D.; Manane, J.; Brandimarte, L. Testing UAV-derived topography for hydraulic modelling in a tropical environment (2020), Natural Hazards, 103(1), 139-163. https://doi.org/10.1007/s11069-020-03963-4
Moreira, P. S. C. Guimarães, A. J. R. Tsunoda, D. F. (2020). Qual ferramenta bibliométrica escolher? Um estudo comparativo entre softwares. P2p e Inovação, 6, 140-158. https://doi.org/10.21721/p2p.2020v6n2.p140-158
Mourato, S. Fernandez, P. Pereira, L. Moreira, M. (2017). Improving a DSM obtained by unmanned aerial vehicles for flood modelling. In IOP Conference Series: Earth and Environmental Science, IOP Publishing, 95, 2, 022014. doi: 10.1088/1755-1315/95/2/022014
Muthusamy, M. Rivas Casado, M. Salmoral, G. Irvine, T. Leinster, P. (2019). A remote sensing based integrated approach to quantify the impact of fluvial and pluvial flooding in an urban catchment. Remote Sensing. 11(5), 577. https://doi.org/10.3390/rs11050577
Nex, F. Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied Geomatics. 6(1), 1-15. https://doi.org/10.1007/s12518-013-0120-x
Paranhos Filho, A. C. Mioto, C. L. Junior, J. M (2016). Geotecnologias em aplicações ambientais. Editora UFMS, 1, 6-15. https://editora.ufms.br/produto/geotecnologias-em-aplicacoes-ambientais/
Paranhos Filho, A. C. Mioto, C. L. Pessi, D. D. Gamarra, R. M.; Da Silva, N. M.; Ribeiro, V. O.; Chaves, J. R. (2020). Geotecnologias para aplicações ambientais. Ed. Uniedusul, 1, 224-235. https://www.uniedusul.com.br/wp-content/uploads/2021/01/GEOTECNOLOGIAS-PARA-APLICACOES-AMBIENTAIS.pdf
QGIS API. 2020. QGIS API Documentation. https://qgis.org/api/3.4/
Redweik, P. (2007). Fotogrametria aérea. Faculdade de Ciências da Universidade de Lisboa, Lisboa, 1, 1-36. <https://www.researchgate.net/profile/Paula-Redweik/publication/268329721_FOTOGRAMETRIA_AEREA/links/564da1e608ae1ef9296aba8d/FOTOGRAMETRIA-AEREA.pdf>
Rio Grande do Sul, BRASIL (2016). Ministério Público do Estado do Rio Grande do Sul. Promotoria de Justiça. Áreas de risco ocupações em planícies de inundação. 22. https://www.mprs.mp.br/noticias/ambiente/41036/
Sahid, N. A. W. Hadi, M. P. (2018). An investigation of Digital Elevation Model (DEM) structure influence on flood modelling. In IOP Conference Series: Earth and Environmental Science, IOP Publishing, 148, 1, 012001. doi: 10.1088/1755-1315/148/1/012001
USACE. User’s Manual HEC-GeoHAS 9.3; Hydrologic Engineering Center-Geospatial Hydrologic Modelling System; US Army Corps of Engineers: Washington, DC, USA, 2010. https://www.hec.usace.army.mil/software/hec-georas/downloads.aspx
USACE. User’s Manual HEC-GeoHMS 10.1; Hydrologic Engineering Center-Geospatial Hydrologic Modelling System; US Army Corps of Engineers: Washington, DC, USA, 2013. https://www.hec.usace.army.mil/software/hec-geohms/downloads.aspx
Valeriano, M. M. Rossetti, D. F. (2012). Topodata: Brazilian full coverage refinement of SRTM data. Applied Geography, Elsevier, 32, 300–309. https://doi.org/10.1016/j.apgeog.2011.05.004
Van Eck, N. J. Waltman, L. (2010). Software survey: VOSViewer, a computer program for bibliometric mapping. Scientometrics. 84, 523–538. https://doi.org/10.1007/s11192-009-0146-3
Wu, J. Zhou, G. Li, Q. (2006). Calibration of small and low-cost UAV video system for real-time planimetric mapping. In 2006 IEEE International Symposium on Geoscience and Remote Sensing, IEEE. doi: 10.1109/IGARSS.2006.535
Yalcin, E. M. R. A. H. (2018). Generation of high-resolution digital surface models for urban flood modelling using UAV imagery. WIT Trans Ecol Environ, 215, 357-366. doi: 10.2495/EID180321
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Andrey Gaspar Sorrilha Rodrigues; Alesson Pires Maciel Guirra; Daniella Nunes Silveira; Amanda Letícia Abegg da Silveira; Jéssica Rabito Chaves; Luiz Claudio Galvão do Valle Junior; Antonio Conceição Paranhos Filho; Roberto Macedo Gamarra
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.