Efficiency of Bacillus subtilis Bs10 as a plant growth promoting inoculant in soybean crop under field conditions

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.22141

Keywords:

Rhizobacteria; Glycine max L. Merrill.; biomass; agronomic characteristics and Productivity; Rhizobacteria; Glycine max L. Merrill; Biomass; Agronomic characteristics; Productivity.

Abstract

The growth of the Brazilian market for biological defensive follows a worldwide trend of reducing the use of pesticides in crops, due to international and societal demands for a more sustainable agriculture. The objective of the present work was to evaluate the efficiency of Bacillus subtilis Bs10 as an inoculant for the soybean crop, through the promotion of plant growth and productive performance in the field. Three field experiments were conduct in the municipalities of Porto Nacional and Formoso do Araguaia, Tocantins, Brazil. The treatments used in the experiments were five doses of the B. subtilis Bs10-based product (0, 100, 200, 300 and 400 mL 50 kg of seeds-1), plus one treatment with a commercial B. subtilis-based product. The inoculation of B. subtilis Bs10 provided increases in biomass, agronomic characteristics, plant population and productivity in soybeans under field conditions. There were positive results starting at a dose of 200 mL, with gains in productivity ranging from 28 to 41% in relation to the absolute control treatment, without inoculation of B. subtilis, and from 11 to 42% in relation to the treatment with commercial product. The bio formulated B. subtilis Bs10 should be recommend as a plant growth promoting inoculant in soybean.

Author Biographies

Lillian França Borges Chagas, Federal University of Tocantins

Agronomy, Plant Production, Microbiology

Albert Lennon Lima Martins, Federal University of Tocantins

Agronomy, Plant Production, Microbiology

Brigitte Sthepani Orozco Colonia, Federal University of Paraná

Bioprocess Engineering and Biotechnology

Manuella Costa Souza, Federal University of Tocantins

Bioprocess and Biotechnology Engineering, Microbiology

Gaspar Moreira Braga Junior, Federal University of Tocantins

Agronomy, Plant Production, Microbiology

References

Abbas, A., Khan, S. U., Khan, W. U., Saleh, T. A., Khan, M. H. U., Ullah, S., Ali, A., & Ikram, M. (2019). Antagonist effects of strains of Bacillus spp. against Rhizoctonia solani for their protection against several plant diseases: Alternatives to chemical pesticides. Comptes Rendus Biologies, 342, 135-124. https://doi.org/10.1016/j.crvi.2019.05.002

Atieno, M., Herrmann, L., Okaleb, R., & Lesueur, D. (2012). Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum. World Journal of Microbiology and Biotechnology, 28 (7), 2550-2541. https://doi.org/10.1007/s11274-012-1062-x

Batista, B. D. (2017). Promoção de crescimento vegetal por Bacillus sp. RZ2MS9: dos genes ao campo. 107pp.Tese (Doutorado) - Universidade de São Paulo.

Braga Junior, G. M., Colonia, B. S. O., Chagas, L. F. B., Scheidt, G. N., Miller, L. O., & Chagas Junior, A. F. (2017). Soybean growth promotion and phosphate solubilization by Bacillus subtilis strains in greenhouse. International Journal of Current Research, 9 (5), 50914-50918.

Braga Junior, G. M. (2019). Bioprospecção e eficiência de Bacillus subtilis como promotor de crescimento vegetal na cultura da soja. 157pp. Tese (Doutorado em Produção Vegetal) - Universidade Federal do Tocantins.

Bratkova, S. G., Kaisheva, A. M., & Manukyan, V. T. (2014). Influence of four Bacillus strains, isolated from calcareous soils, on phosphate solubilization. Annuaire de Université de Sofia, 100 (4), 31-21.

Conab. (2020). National Supply Company (CONAB). Acompanhamento da safra brasileira de grãos, v. 7 - Safra 2019/20 - Décimo segundo levantamento, Brasília, p. 1-68, setembro 2020. Available at: https://www.conab.gov.br.

Dalal, J., & Kulkarni N. (2014). Antagonistic and plant growth promoting potentials of indigenous endophytic bacteria of soybean [Glycine max (L) Merril]. CIBTech Journal of Microbiology, 3 (4), 12-1.

EMBRAPA. (2011). Manual de métodos de análise de solo. 2. ed. Rio de Janeiro: EMBRAPA - CNPS. 225p.

García-Lopez, A. M., & Delgado, A. (2016). Effect of Bacillus subtilis on phosphorus uptake by cucumber as affected by iron oxides and the solubility of the phosphorus source. Agric. Food Sci., 25 (3), 224-216. https://doi.org/10.23986/afsci.56862

Guimarães, V. F., Klein, J., Silva, A. S. L., & Klein, D. K. (2021). Eficiência de inoculante contendo Bacillus megaterium (B119) e Bacillus subtilis (B2084) para a cultura do milho, associado à fertilização fosfatada. Research, Society and Development, 10 (4), e431101220920. http://dx.doi.org/10.33448/rsd-v10i12.20920

Huang, X. F., Chaparro, J. M., Reardon, K. F., Zhang, R., Shen, Q., & Vivanco, J. M. (2014). Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany, 92 (4), 275-267. https://doi.org/10.1139/cjb-2013-0225

Jain, S., Kumari, S., Vaishnav, A., Choudhary, D. K., & Sharma, K. P. (2016). Isolation and characterization of plant growth promoting bacteria from soybean rhizosphere and their effect on soybean plant growth promotion. Int. J. Advanc. Sci. Tec. Res., 5, 410-397.

Kalam, S., Basu, A., & Podile, A. R. (2020). Functional and molecular characterization of plant growth promoting Bacillus isolates from tomato rhizosphere. Heliyon, 6, e04734. https://doi.org/10.1016/j.heliyon.2020.e04734

Kalayu, G. (2019). Phosphate solubilizing microorganisms: Promising approach as biofertilizers. International Journal of Agronomy, 2019, 4917256. https://doi.org/10.1155/2019/4917256

Lagerlöf, J., Ayuke, F., Bejai, S., Jorge, G., Lagerqvist, E., Meijer, J., Johnmuturi, J., & Söderlund, S. (2015). Potential side effects of biocontrol and plant-growth promoting Bacillus amyloliquefaciens bacteria on earthworms. Applied Soil Ecology, 96, 164-159. https://doi.org/10.1016/j.apsoil.2015.08.014

Lanna Filho, R., Ferro, H. M., & Pinho, R. S. C. (2010). Controle biológico mediado por Bacillus subtilis. Revista Tropica, 4 (2), 20-12. http://dx.doi.org/10.0000/rtcab.v4i2.145

Machado, P. C., Andrade, P. H. M., Quecine, M. C., & Lacava, P. T. (2016). Potencial de promoção de crescimento vegetal de bactérias endofíticas associadas a Jatropha curcas L. Cienc. Tecnol, 8, 14-1.

MAPA. Ministry of Agriculture, Livestock and Supply. (2019). Biochemicals market grows more than 70% in Brazil in one year. Available at: http://www.agricultura.gov.br/noticias/feffmercado-de-biodefensivos-cresce-em-mais-de-50-no-brasil.

Milani, R. D. M. (2017). Diversidade de bactérias epífitas e endofíticas da cultura do milho. Dissertação (Mestrado). 44 pp. Faculdade de Ciências Agrárias e Veterinárias. Jaboticabal, UNESP.

Mishra, S., Mahato, S. K., Basi, S., & Basi-Chipalu, S. (2016). Comparative study on plant growth promotion by endophytic Pseudomonas spp. and Bacillus spp. of Solanum lycopersicum. Int. J. Appl. Sci. Biotechnol., 4 (4), 469-464. https://doi.org/10.3126/ijasbt.v4i4.16251

Mohamed, E. A. H., Farag, A. G., & Youssef, S. A. (2018). Phosphate solubilization by Bacillus subtilis and Serratia marcescens isolated from tomato plant rhizosphere. Journal of Environmental Protection, 9, 277-266. https://doi.org/10.4236/jep.2018.93018.

Pii, Y., Mimmo, T., Tomasi, N., Cesco, S., & Crecchio, C. (2015). Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process: a review. Biology and Fertility of Soils, 51 (4), 415-403. https://doi.org/10.1007/s00374-015-0996-1.

Rahman, M. D., Hossain, D. M., Suzuki, K., Shiiya, A., Suzuki, K., Dey, T. P., Nonaka, M., & Harada, N. (2016). Suppressive effects of Bacillus spp. on mycelia, apothecia and sclerotia formation of Sclerotinia sclerotiorum and potential as biological control of white mold on mustard. Australian Plant Pathol., 45 (1), 117-103. https://doi.org/10.1007/s13313-016-0397-4.

Ratz, R. J., Palácio, S. M., Espinoza-Quiñones, F. R., Vicentino, R. C., Michelim, H. J., & Richter, L. M. (2017). Potencial biotecnológico de rizobactérias promotoras de crescimento de plantas no cultivo de milho e soja. Engevista. 19 (4), 905-890.

Ribeiro, V. P., Marriel, I. E., Sousa, S. M. D., Lana, U. G. D. P., Mattos, B. B., Oliveira, C. A. D., & Gomes, E. A. (2018). Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Brazilian Journal of Microbiology, 49, 46-40. https://doi.org/10.1016/j.bjm.2018.06.005

Rocha, E. N. D. (2019). Inoculação de Bacillus subtilise tratamento químico em sementes de feijão Caupi e feijão comum: lotes, tempo de exposição e doses. 115 pp. Tese (Doutorado em Agronomia) - Faculdade de Engenharia do Campus de Ilha Solteira - UNESP.

Saeid, A., Prochownik, E., & Dobrowolska-Iwanek, J. (2018). Phosphorus solubilization by Bacillus species. Molecules, 23 (11), 2897. https://doi.org/10.3390/molecules23112897

Santos, B. M. S., Silva, M. S. R. A., Chávez, D. W. H., & Rigobelo, E. C. (2020). Genetic and nutritional diversity of Bacillus subtilis isolates demonstrating different aspects related to plant growth promotion. Australian Journal of Crop Science, 14 (5), 888-880. https://doi.org/10.21475/ajcs.20.14.05.p2671

Santos, A. F., Corrêa, B. O., Klein, J., Bono, J. A. M., Pereira, L. C., Guimarães, V. F., & Ferreira, M. B. (2021). Biometria e estado nutricional da cultura da aveia branca (Avena sativa L.) sob inoculação com Bacillus subtilis e B. Megaterium. Research, Society and Development, 10 (5), e53410515270. http://dx.doi.org/10.33448/rsd-v10i5.15270

Santoyo, G., Orozco-Mosqueda, M. D., & Govindappa, M. (2012). Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Technol., 22 (8), 872-855. http://dx.doi.org/10.1080/09583157.2012.694413

Saxena, A. k., Kumar, M., Chakdar, H., Anuroopa, N., Bagyaraj, D. J. (2019). Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 128, 1583-1594. https://doi.org/doi:10.1111/jam.14506

Tahir, H. A. S., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., & Gao, X. (2017). Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front. Microbiol., 8, 171. http://dx.doi.org/10.3389/fmicb.2017.00171

Tavanti, T. R., Tavanti, R. F. R., Galindo, F. S., Simões, I., Dameto, L. S., & Sá, M. E. (2020). Yield and quality of soybean seeds inoculated with Bacillus subtilis strains. Revista Brasileira de Engenharia Agrícola e Ambiental, 24 (1), 71-65. http://dx.doi.org/10.1590/1807-1929/agriambi.v24n1p65-71

Downloads

Published

08/11/2021

How to Cite

CHAGAS JUNIOR, A. F. .; CHAGAS, L. F. B. .; MARTINS, A. L. L.; COLONIA, B. S. O.; SOUZA, M. C.; BRAGA JUNIOR, G. M. Efficiency of Bacillus subtilis Bs10 as a plant growth promoting inoculant in soybean crop under field conditions. Research, Society and Development, [S. l.], v. 10, n. 14, p. e441101422141, 2021. DOI: 10.33448/rsd-v10i14.22141. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22141. Acesso em: 23 nov. 2024.

Issue

Section

Agrarian and Biological Sciences