Magnetoelectric, magnetodielectric and magneto-impedance couplings in Bi1−xNdxFe0.99Co0.01O3 compounds
DOI:
https://doi.org/10.33448/rsd-v10i14.22189Keywords:
Ceramics; BiFe03; Non-linear magnetoelectric effect.Abstract
In this work Bi1−xNdxFe0.99Co0.01O3 ceramics compositions were synthesized for x = 0.05, 0.20 and, y = 0.01. Structural refinement results show that most of the samples crystallized in a rhombohedral symmetry with R3c. Measurements magnetoelectric coefficient, show that the magnetoelectric coefficients are of second order. The electrical impedance characterization of in function external magnetic fields, has a relative variation of the real dielectric response, the loss tangent and the electrical impedance. The systems, as the DC magnetic field strength increased a gain in both the values of the dielectric constant variation, as well as the variation of the electrical impedance. In other words, the greater the intensity of the magnetic field, the greater your response. There were also significant variations with of the magnetic field AC.
References
Bilmes S. A., Mandelbaum P., Alvarez, F. & Victoria N. M. (2000). Surface and Electronic Structure ofTitanium Dioxide Photocatalysts, 104, 9851–9858.
Chizhik A., Vega V., Mohamed A. E.-M. A., Prida V., Sánchez T., Hernando B., Ipatov M., Zhukova V., Zhukov A., Stupakiewicz A., Domínguez L., & González J. (2017). Surface magnetic properties and giant magnetoimpedance effect in co-based amorphous ribbons. Intermetallics, 86, 15–19.
de Oliveira O. G. (2015). Refinamento Estrutural e Cálculos de Densidade Eletrônica no Sistema Multiferróico (Bi1-xNdx)(Fe1-yCoy)O3. Dissertação de Mestrado, Universidade Estadual de Maringá, Maringá.
Fei L., Hu Y., Li X., Song R. et al. (2015). Electrospun bismuth ferrite nanofibers for potential applications in ferroelectric photovoltaic devices Acs Applied Materials and Interfaces 7, 3665.
Fischei, P, Polemska, M, Sosnowska, I & Szymanski, M (1931). Temperature dependence of the crystal and magnetic structures of BiFeO3 1980 J. Phys. C 13,1931.
Geng Y., et al (2014). Direct visualization of magnetoelectric domains, Nature Materials, 13, 163–167.
Hasan M., Islam M. F., Mahbub R., Hossain M. S & Hakim, M. A (2016). A soft chemical route to the synthesis of BiFeO3 nanoparticles with enhanced magnetization. Boletim de Pesquisa de Materiais 73, 179
Kammouni R. E., Kurlyandskaya G., Vázquez M., & Volchkov S. (2016). Magnetic properties and magnetoimpedance of short CuBe/CoFeNi electroplated microtubes. Sensors and Actuators A: Physical, 248, 155–161.
Li B., Kavaldzhiev M. N., & Kose, J. (2015). Flexible magnetoimpedance sensor. Journal of Magnetism and Magnetic Materials, vol. 378, pp. 499–505.
Li B., Wang C., Liu W., Ye M. & Wang N. (2013). Magnetic and Photocatalytic Behaviors of Ca Mn Co-Doped BiFeO3 Nanofibres. Materials Letters ,90, 45.
Liu Y., Yao Y., Dong S., Jiang T., Yang S., & Li X. (2012). Colossal magnetocapacitance effect in BiFeO3/La5/8Ca3/8MnO3 epitaxial films. Thin Solid Films, 520(17), 5775–5778.
Mincache, A. J., et al (2016). Evidencing the magnetoelectric coupling in Bi1-xNdxFeO3 compositions through ferroic characterizations. Integr. Ferroelectr. 174 pp. 98-103.
Phan M. H., & Peng H. X. (2008). Giant magnetoimpedance materials: fundamentals and applications, Prog. Mater. Sci. 53, 323e420, https://doi.org/10.1016/ j.pmatsci.2007.05.003
Pirc R. & Blinc R. (2010). Nonlinear magnetoelectric effect in magnetically disordered relaxor ferroelectrics. Ferroelectrics, 400(1), 387–394.
Ramazanoglu M., Ii W.R., Choi Y.J., Lee S., Cheong S., & Kiryukhin V. (2011). Temperature-dependentproperties of the magnetic order in single-crystal BiFeO3, 174434, 1–6.
Rana D. K., Kundu S. K., Choudhary, R. J. & Basu,1 (2019). Enhancement of electrical and magnetodielectric properties of BiFeO3 incorporated PVDF flexible nanocomposite films. Published IOP Publishing Ltd.
Shen Y., Gao J., Wang Y., Finkel P., Li, J. & Viehland D. (2013). Piezomagnetic straindependent non-linear magnetoelectric response enhancement by flux concentration effect. Applied Physics Letters, 102(17), 172904.
Shvartsman V. V., Kleemann W., Haumont R., & Kreisel J. (2007). Large bulk polarization and regular domain structure in ceramic BiFeO3. Applied Physics Letters, 90(17), 172115.
Singh O., A. Agarwal, Amitabh Das, & Sanghi S., Jinda A. (2017). Evolution of structural and magnetic phases in Nd doped BiFeO3 multiferroics with sintering time. 442, 200-207.
Tokura Y., Seki S., & Nagaosa N. (2014). Multiferroics of spin origin. Reports on Progress in Physics 77(7), 76501.
Wang, J., et al (2003). Effect of Ba Substitution on the Structural and Magnetic Properties of BiFeO3 Science (New York, N.Y.) 299(5613) 1719.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Anuar José Mincache; Odair Gonçalves de Oliveira; Lilian Felipe da Silva Tupan; Daniel Matos Silva; Ivair Aparecido dos Santos; Luiz Fernando Cotica
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.