Technical evaluation of biogás synthesis process from rural substrates

Authors

DOI:

https://doi.org/10.33448/rsd-v10i15.22229

Keywords:

Biomethane; Process Simulation; SuperPro Designer; Bioprocesses.

Abstract

The region of Coffee Valley, in the state of Rio de Janeiro, has a large part of the land devoted to agriculture and the municipality of Vassouras, as one of the cities that comprise it, has approximately 62% of the area devoted to this practice. The large volume of animal waste and vegetable straw in these rural regions has potential as a raw material for energy generation and can also contribute to the production of organic fertilizers. Rural residues converted into gases and/or organic fertilizers can be used by local agriculture itself, contributing to sustainable development. This work aimed to evaluate the technical feasibility of biomethane production using rural substrates as raw material. For this analysis, the process simulator (SuperPro Designer®) was used. The simulation considered an anaerobic digester with a capacity of 6 tons and feeding 112.5 kg/d of organic material, with 90 kg of dry manure and 22.5 kg of vegetable straw. Data from enzymatic reactions that occur in the anaerobic digestion process were adjusted in the simulator and corresponded to the steps of hydrolysis, acidogenesis, acetogenesis and methanogenesis. After the simulation performed, the technical feasibility of biogas production was verified, with approximately 90 m3 of biogas being generated per day.

References

Angelidaki, I., Ellegaard, L. & Ahring, B. K. (1993). A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focusing on ammonia inhibition. Biotechnology and bioengineering, 42(2), 159-166.

Baas, P. (1985). Wood-Chemistry, ultrastructure, reactions. D. Fengel and G. Wegener, xiii+ 613 pp., 351 mus., 1984. Walter de Gruyter, Berlin, New York. Price: DM 245.00 (cloth). IAWA Journal. 6 (1).

Biogás. Portal do Biogás. (2021). https://www.portaldobiogas.com/biogas/>.

Deublein, D., & Steinhauser, A. (2008). Biogas from Waste and Renewable Resources: An introduction. Weinheim: Wiley-VCH.

De Souza, M. E. (1984). Fatores que influenciam a digestão anaeróbia. Revista DAE. 44 (137), 88-94.

Fontes de Energia. Empresa de Pesquisa Energética. (2021). https://www.epe.gov.br/pt/abcdenergia/fontes-de-energia>.

Gonçalves, M.N. (2018). Os Efeitos da Temperatura na Produção de Biogás em Biodigestores. Dissertação (Programa de Pós-Graduação em Engenharia Elétrica) - Universidade Federal de Uberlândia, Mg. https://repositorio.ufu.br/bitstream/123456789/22175/3/EfeitosTe mperaturaProdu%C3%A7%C3%A3o.pdf

Intelligen. SuperPro Designer Overview. Simulation, Designer, and Scheduling Tools for the Process Manifacturing Industries. 2020. <https://www.intelligen.com/products/superpro-overview/>.

Junior, B.C. (2009). Embrapa – Agroenergia da biomassa residual: perspectivas energéticas, socioeconômicas e ambientais. Foz do Iguaçu: FAO.

Junqueira, S.L.C.D. (2014). Geração de energia através de biogás proveniente de esterco bovino: estudo de caso na fazenda aterrado. TCC (Trabalho de Conclusão de Curso em graduação Engenharia Mecânica) - Universidade do Rio Janeiro, Departamento de Engenharia Mecânica DEM/POLI/UFRJ, Rio de Janeiro.

Kunz, A, Steinmetz, R.L.R. & Do Amaral, A.C. (2019). Fundamentos da digestão anaeróbia, purificação do biogás, uso e tratamento do digestato. Embrapa Suínos e Aves – Livro científico.

Noyola, A., Morgan-Sagastume, J. M. & Lópezhernandez, J. E. (2006). Treatment of biogas produced in anaerobic reactors for domestic wastewater: odor control and energy/resource recovery. Reviews in Environmental Science and Bio/Technology, Dordrecht. 5(1), 93–114.

Ogeda, T. L. & Petri, D. F. S. (2010). Hidrólise enzimática de biomassa. Química nova. 33, 1549-1558.

Oliver, A.P.M. & Souza Neto, A. A., Quadros, D. G. (2008). Manual de treinamento em biodigestão. Salvador. Instituto Winrock Brasil, 23 p.

Poggi, E.S. (2014). Simulação de processos e rendimentos esperados para a produção de glicose a partir de diferentes híbridos de cana de açúcar.

Rebellatto, A. (2013). Avaliação agronômica de fertilizantes sólidos e fluidos a base de dejetos de suínos e aves. Tese de Doutorado (Programa de Pós-graduação em Manejo do Solo) -Universidade do Estado de Santa Catarina - UDESC. 113p.

Rique, V. H. A. (2021). Projeto de uma planta de biogás a partir de resíduos alimentares utilizando o simulador SuperPro Designer®. TCC (Trabalho de Conclusão de Curso em Engenharia de Bioprocessos) - Escola de Química, Universidade Federal do Rio de Janeiro, RJ.

Saliba, E. O. S., Rodriguez, N. M., Morais, S. A. L. & Veloso, D. P. (2001). Ligninas: métodos de obtenção e caracterização química. Ciência rural. 31, 917-928.

Silva, C. A. (2013). Gerenciamento de resíduos. Instituto Federal do Paraná – Educação á Distância. Rede e-Tec

Você sabe o que é balanço de massa e energia? Projeto e Pesquisa em Engenharia Química. (2021). <https://propeq.com/balanco-de-massa-e-energia/>.

Yu, L., Wensel, P. C., Ma, J. & Chen, S. (2013). Mathematical modeling in anaerobic digestion (AD). J Bioremed Biodeg S. 4(2).

Published

21/11/2021

How to Cite

PETRAGLIA, . F. F. N. .; GONÇALVES, G. A. de S. .; MARTINS, A. L. da S. .; SOUZA, A. L. B. de; PESSOA, F. L. P. .; PEREIRA, C. de S. S. Technical evaluation of biogás synthesis process from rural substrates. Research, Society and Development, [S. l.], v. 10, n. 15, p. e96101522229, 2021. DOI: 10.33448/rsd-v10i15.22229. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22229. Acesso em: 24 apr. 2024.

Issue

Section

Exact and Earth Sciences