Compounds of biopolyethylene/cotton linter compatibilized with PE-g-MA
DOI:
https://doi.org/10.33448/rsd-v10i14.22243Keywords:
Biopolyethylene; Biopolyethylene, Cotton Linter, Compatibilizer, Compounds, Properties; Cotton linter; Compatibilizer; Compounds; Properties.Abstract
Currently, polymers have been reinforced with natural fibers, aiming at generating a class of new materials less aggressive to the environment. Therefore, this study aimed to develop biopolyethylene (BioPE)/cotton linter compounds, compatible with polyethylene grafted with maleic anhydride (PE-g-MA). The compounds were initially prepared in a co-rotational twin screw extruder, and thereafter, the extruded granules were injection molded. The compounds were characterized by mechanical properties (impact and traction), heat deflection temperature (HDT), Vicat softening temperature (VST), differential exploration calorimetry (CSD), contact angle and scanning electronic microscope (SEM). There was a slight increase in elastic modulus, tensile strength, HDT and VST of the compounds, compared to neat BioPE. However, there were losses in impact strength. The presence of PE-g-MA and the linter increased the degree of crystallinity of the compounds, compared to BioPE. The compatibilized compounds showed particles of linter connected with the BioPE matrix, indicating possible interactions between maleic anhydride and hydroxyl groups of the linter. Improved results were achieved when PE-g-MA was used with a higher degree of grafting, suggesting that functionalization impacts the mechanical and thermal properties of the compounds.
References
Arabeche, K., Abdelmalek, F., Delbreilh, L., Zair, L.,& Berrayah, A. Physical and rheological properties of biodegradable poly(butylene succinate)/alfa fiber composites. Journal of Thermoplastic Composite Materials. Epub ahead of print 13 February 2020. DOI: 10.1177/0892705720904098.
Baptista, C. A., & Canevarolo, S. V. (2017). Grafting polypropylene over hollow glass microspheres by reactive extrusion. Polímeros, 29(3), 1-9.
Beydoun, K., & Klankermayer, J. (2020). Efficient plastic waste recycling to value‐added products by integrated biomass processing. ChemSusChem, 13(3), 488 – 492.
Bezerra, E. B., França, D. C., Morais, D. D. S., Siqueira, D. D., Araújo, E. M., & Wellen, R. M. R. (2019a). Toughening of bio-PE upon addition of PCL and PEgAA. REM - International Engineering Journal, 72(3), 469-478.
Bezerra, E. B., França, D. C., Morais, D. D. S., Silva, I. D. S., Siqueira, D. D., Araújo, E. M., & Wellen, R. M. R. (2019b). Compatibility and characterization of Bio-PE/PCL blends. Polímeros, 29(2), 1-15.
Bezerra, E. B., França, D. C., Morais, D. D. S., Araújo, E. M., Rosa, M. F., & Oliveira, A. D. (2015). Estudo das propriedades mecânicas e termomecânicas de compósitos de poli(ɛ-caprolactona)/nanolínter. Revista Eletrônica de Materiais e Processos, 10(1), 16-20.
Brito, G. F., Agrawal, P., Araújo, E. M., & Mélo, T. J. A. (2012). Polylactide/Biopolyethylene bioblends. Polímeros, 22(5), 427-429.
Bosenbecker, M. W., Croche, S., Cholant, G., Rosa, P., Passador, F., Marini, J.,& Oliveira, A. (2018). Propriedades térmicas de compósitos de polietileno de alta densidade reforçados com celulose. Revista Brasileira de Engenharia e Sustentabilidade, 5(especial), 7-12.
Castro, D. O., Passador, F., Filho, A. R., & Frollini, E. (2017). Use of castor and canola oils in “biopolyethylene” curauá fiber composites. Composites Part A: Applied Science and Manufacturing, 95(4), 22-30.
Castro, D. O., Filho, A. R., & Frollini, E. (2012). Materials prepared from biopolyethylene and curaua fibers: Composites from biomass. Polymer Testing, 31(7), 880-888.
Castro, D. O., Frollini, E., Marini, J., & Filho, A. R. (2013). Preparação e caracterização de biocompósitos baseados em fibra de curauá, biopolietileno de alta densidade (BPEAD) e polibutadieno líquido hidroxilado (PBHL). Polímeros, 23(1), 65-73.
Cataldi, P., Cassinelli, M., Guerrero, J. A. H., Puyol, S. G., Naderizadeh, S., Athanassiou, A., & Caironi, M. (2020). Green biocomposites for thermoelectric wearable applications. Advanced Functional Materials, 30(3), 1-10.
Catto, A. L., Stefani, B. V., Ribeiro, V. F., & Santana, R. M. C. (2014). Influence of coupling agent in compatibility of post-consumer HDPE in thermoplastic composites reinforced with eucalyptus fiber. Materials Research, 17(1), 1-7.
Cicconi, P. (2020). Eco-design and eco-materials: An interactive and collaborative approach. Sustainable Materials and Technologies, 23(4), 1-24.
Dong, C. (2017). Review of natural fibre-reinforced hybrid composites. Journal of Reinforced Plastics and Composites, 37(5), 331-348.
Ferreira, E. S. B., Luna, C. B. B., Araújo, E. M., Siqueira, D. D., & Wellen, R. M. R. Polypropylene/wood powder composites: Evaluation of PP viscosity in thermal, mechanical, thermomechanical, and morphological characters. Journal of Thermoplastic Composite Materials. Epub ahead of print 09 October 2019. DOI: 10.1177/0892705719880958.
Firmino, H. C. T., Chagas, T. F., Melo, P. M. A., & Silva, L. B. (2017). Caracterização de compósitos particulados de polietileno de alta densidade/pó de concha de molusco. Matéria (Rio J.),22(4), 1-12.
Gandara, M., Gonçalves, A. R., & Saron, C. (2017). Compósitos de PET reciclado com fibra de cana-de-açúcar tratada por explosão a vapor. Matéria (Rio J.), 22(4), 1-10.
Hoffmannab, R., Morais, D. D. S., Braz, C. J. F., Haaga, Wellen, R. M. R., Canedo, E. L., Carvalho, L. H., & Koschek, K. (2019). Impact of the natural filler babassu on the processing and properties of PBAT/PHB films. Composites Part A: Applied Science and Manufacturing, 124(9), 1-9.
Jesus, L. C. C., Luz, S. M., Leão, R. M., Zattera, A. J., & Amico, S. C. (2019). Comportamento térmico de compósitos de poliestireno reciclado reforçado com celulose de bagaço de cana. Matéria (Rio J.), 24 (3), 1-11.
Júnior Padilha, E. J.,& Zard, C. L. (2010). Comportamento mecânico e reológico de compósitos de polipropileno e fibras de bananeira: Influência do teor de fibra. Revista Eletrônica de Materiais e Processos, 5(1), 10-16.
Kotik, H. G. (2019). Fibras naturais e compósitos reforçados com fibras naturais: a motivação para sua pesquisa e desenvolvimento. Matéria (Rio J.), 24 (3), 1-3.
Marinho, V. A. D., Almeida, T. G., Carvalho, L. H., & Canedo, E. L. (2018). Aditivação e biodegradação de compósitos PHB/babaçu. Revista Eletrônica de Materiais e Processos, 13(1), 37-41.
Mei, L. H., & Oliveira, N. (2017). Caracterização de um compósito polimérico biodegradável utilizando Poli (ε-caprolactona) e borra de café. Polímeros, 27(número especial), 99-109, 2017.
Montanes, N., Sanoguera, D. G., Segui, V. J., Fenollar, O., & Boronat, T. (2018). Processing and characterization of environmentally friendly composites from biobased polyethylene and natural fillers from thyme herbs. J Polym Environ, 26(5), 1218–1230.
Nery, T. B. R., Santos, Z. I. G., & José, N. M. (2018). Desenvolvimento e caracterização de biocompósitos de polihidroxibutirato e fibra de bananeira. Matéria (Rio J.), 23(4), 1-9.
Poletto, M. (2017a). Compósitos termoplásticos com madeira - uma breve revisão. RICA, 2(4), 42-48.
Poletto, M. (2017b). Mechanical, dynamic mechanical and morphological properties of composites based on recycled polystyrene filled with wood flour wastes. Maderas. Ciencia y tecnologia, 19(4), 433-442.
Poletto, M. (2018). Maleated soybean oil as coupling agent in recycled polypropylene/wood flour composites: Mechanical, thermal, and morphological properties. Journal of Thermoplastic Composite Materials, 32(8), 1056-1067.
Rabello, M. S. Aditivação de polímeros (1a ed.). São Paulo: Artliber Editora, 2000.
Ramos, R. R. F., Siqueira, D. D., Wellen, R. M. R., Leite, I. F., Glenn, G. M., & Medeiros, E. S. (2019). Development of green composites based on polypropylene and corncob agricultural residue. Journal of Polymers and the Environment, 27(5), 1677–1685.
Ramos, S. M. L. S., Carvalho, L. H., Spieth, E., & Rivadula, R. S. M. (1993). Efeitos da estabilização do Polipropileno nas propriedades térmicas, mecânicas e termo-mecânicas de compósitos de polipropileno/atapulgita. Polímeros, 3(4), 26-31.
Redighieri, K. A., & Costa, D. A. (2008). Compósitos de polietileno reciclado e partículas de madeira de reflorestamento tratadas com polietileno modificado. Polímeros, 18(1), 5-11.
Santos, E. B., Passador, F. R.,& Montagna, L. S. (2020). Influência de fatores ambientais nas propriedades mecânicas de biocompósitos de PLA reforçado com fibra de coco e borra de café. Tecno-Lógica, 24(1), 93-102.
Santos, E. F., Moresco, M., Rosa, S. M. L., & Nachtigall, S. M. B. (2010). Extrusão de compósitos de PP com fibras curtas de coco: efeito da temperatura e agentes de acoplamento. Polímeros, 20(3), 215-220.
Seixas, J. N., Granada, J. E., Melo, C. C. N., Silva, G. E. H., Passador, F. R., Cholant, G. M., Oliveira, A. D., Beatrice, C. A. G., Gonçalves, M. R. F., & Carreño, N. N. L. V. (2018). Compósitos de polipropileno reforçados com fibras naturais do talo da banana em diferentes granulometrias. Revista Brasileira de Engenharia e Sustentabilidade, 5(especial), 32-37.
Silva, C. C., Júnior, R. C. S. F., Ford, E. T. L. C., Dantas, C. M., Santos, J. K. D., & Aquino, E. M. F. (2018). Mechanical behavior and water absorption in sisal/glass hybrid composites. Matéria (Rio J.), 23(4), 1-10.
Siqueira, D. D., Luna, C. B. B., Araújo, E. M., Filho, E. A. S., Morais, D. D. S., & Wellen, R. M. R. (2019a). Biodegradable compounds of poly (Ɛ-caprolactone)/montmorillonite clays. Materials Research, 22(suppl. 1), 1-10.
Siqueira, D. D., Luna, C. B. B., Araújo, E. M., Ferreira, E. S. B., & Wellen, R. M. R. (2019b). Biocomposites based on PCL and macaiba fiber. Detailed characterization of main properties. Materials Research Express, 6(9), 1-12.
Spadetti, C., Filho, E. A. S., Sena, G. L., & Melo, C. V. P. (2017). Propriedades térmicas e mecânicas dos compósitos de Polipropileno pós-consumo reforçados com fibras de celulose. Polímeros, 27(especial), 84-90.
Luna, C. B. B., Ferreira, E. S. B., Silva, L. J. M. D., Silva, W. A., Araújo, E. M.,& Melo, J. B. C. S. (2019a). Blends with technological potential of copolymer polypropylene with polypropylene from post-consumer industrial containers. Materials Research Express, 6(12), 1-13.
Luna, C. B. B., Siqueira, D. D., Araújo, E. M., & Wellen, R. M. R. (2019b). Tailoring PS/PPrecycled blends compatibilized with SEBS. Evaluation of rheological, mechanical, thermomechanical and morphological characters. Materials Research Express, 6(7), 1-16.
Luna, C. B. B., Siqueira, D. D., Ferrera, E. S. B., Araújo, E. M., & Wellen, R. M. R. (2019c). Reactive compatilization of PCL/WP upon addition of PCL-MA. Smart option for recycling industry. Materials Research Express, 6(12), 1-15.
Luna, C. B. B., Ferreira, E. S. B., Siqueira, D. D., Silva, W. A., Araújo, E. M., & Wellen, R. M. R.. (2019d). Tailoring performance of PP/HIPS/SEBS through blending design. Materials Research Express, 6(11), 1-17.
Luna, C. B. B., Araújo, E. M., Siqueira, D. D., Morais, D. D. S., Filho, E. A. S., & Fook, M. V. L. (2020). Incorporation of a recycled rubber compound from the shoe industry in polystyrene: Effect of SBS compatibilizer contente. Journal of Elastomers & Plastics, 52(1) 3–28.
Taghavi, S. K., Shahrajabian, H., & Hosseini, H. M. (2018). Detailed comparison of compatibilizers MAPE and SEBS-g-MA on the mechanical/thermal properties, and morphology in ternary blend of recycled PET/HDPE/MAPE and recycled PET/HDPE/SEBS-g-MA. Journal of Elastomers & Plastics, 50(1), 13-35.
Takemori, M.T. (1979). Towards an understanding of the heat distortion temperature of thermoplastics. Polym Eng Sci, 19(15), 1104-1109.
Wis, A. A., Kodal, M., Ozturk, S., & Ozkoc, G. (2020). Overmolded polylactide/jute‐mat eco‐composites: A new method to enhance the properties of natural fiber biodegradable composites. Journal of Applied Polymer Science, 137(20), 1-10.
Yang, H. S., Wolcott, M. P., Kim, H. S., Kim, S., & Kim, H. J. (2006). Properties of lignocellulosic material filled polypropylene bio-composites made with different manufacturing processes. Polymer Testing, 25(5), 668-676.
Zhang, Q., Lu, W., Zhou, L., Zhang, D., Cai, H., & Lin, X. Tensile and flammability characterizations of corn straw slagging/high-density polyethylene composites. Journal of Thermoplastic Composite Materials. Epub ahead of print 08 April 2019. DOI: 10.1177/0892705719830459.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Aline Florindo Salviano; Carlos Bruno Barreto Luna; Danilo Diniz Siqueira; Edcleide Maria Araújo; Rodholfo da Silva Barbosa Ferreira; Elieber Barros Bezerra
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.