Adjustment of non-linear models to Covid-19 notifications in the municipality of Palmas – Tocantins

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.22346

Keywords:

Covid-19 Pandemic; Viral infections; Analytical epidemiology.

Abstract

Understanding how the transmissibility of a disease occurs is important to establish the necessary measures to combat it. Thus, the objective is to identify which non-linear model, between the models of Gompertz, Von Bertallanfy and Logistic, would better adjust the curve of prevalence of cases of Covid-19 of the city of Palmas-TO. As well as analyzing data from case reports and deaths, in variables such as gender and age group. Data will be used until September 2021, found on the SESAU-TO website, the notifications are confirmed through the RT-PCR test. The formulas of the models will be compiled and represented in graphs. To define the best model will be developed an AI, whose lowest value indicates the best fit. We can observe that although the highest rate of affection was in adults, the highest lethality was in the elderly. In relation to the variable gender, the highest rate of affection was in the female sex, and of lethality in the male sex. We can conclude that the model that presented the best fit to the notifications was the one from Gompertz, with a lower OI value. In addition, the estimated value found at the end of the period observed in the Gompertz model was the most similar to the number of notifications in Palmas among the models analyzed. It was also observed that Von Bertalanffy’s model presented a low AI, being also a curve suitable for Palmas. However, as for the Logistic method curve, it was the most adjusted at the beginning of the period, but as the mutations progressed, it did not become effective for the municipality.

References

Ashour, H. M., Elkhatib, W. F., Rahman, M. M., & Elshabrawy, H. A. (2020). Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens (Basel, Switzerland), 9(3), 186. https://doi.org/10.3390/pathogens9030186

Bomfim, F. (2020). COVID-19, a pandemia que mudou a saúde e a economia. Revista Ciências Em Saúde, 10(2), 1-2. https://doi.org/10.21876/rcshci.v10i2.995

Brasil. Ministério da Saúde. (2020). Painel Coronavírus. Página inicial. https://covid.saude.gov.br/.

Correia, T. (2020). A gestão política da Covid-19 em Portugal: contributos analíticos para o debate internacional. Revista Saúde em Debate, Agosto 2020. https://preprints.scielo.org/index.php/scielo/preprint/download/1140/1711/1795.

Cunha, Y. L. da. (2014). Utilização de modelos não lineares para descrever a curva de crescimento de caprinos leiteiros da raça Alpina. Curso de Agronomia, Universidade Federal de Viçosa, Viçosa. http://www.agn.ufv.br/wp-content/uploads/2017/08/CunhaY.L.-40952.pdf

Escobar, A. L., Rodriguez, T. D. M., & Monteiro, J. C. (2020). Letalidade e características dos óbitos por COVID-19 em Rondônia: estudo observacional. Epidemiologia e Serviços de Saúde, [S.L.], v. 30, n. 1, p. 9. http://dx.doi.org/10.1590/s1679-49742021000100019.

Iuliano, A. D. (2018). Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. The Lancet. https://pubmed.ncbi.nlm.nih.gov/29248255/.

Krieger, N., Chen, J. T. & Waterman, P. D. (2020). Excess mortality in men and women in Massachusetts during the COVID-19 pandemic. The Lancet. 395, 10240, p. 1829. Elsevier BV. http://dx.doi.org/10.1016/s0140-6736(20)31234-4. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31234- 4/fulltext.

Laird, A. K. (1966). Dynamics of relative growth. Growth, Bar Harbor, v.29, p.249-263.

Melchior, T. B. (2011). H1N1: pandemia e perspectiva atual. J. Bras. Patol. Med. Lab, 47. https://doi.org/10.1590/S1676-24442011000600007

Ministério da Saúde. (2004). Boletim Epidemiológico 01. Brasília, DF: Ministério da Saúde.

Narváez, V. D. (2020). Qual é a curva que melhor explica o crescimento de casos confirmados da COVID-19 no Chile? Revista Latino-Am. Enfermagem, vol.28. Ribeirão Preto 2020 Epub June 26, 2020. https://www.scielo.br/scielo.php?pid=S0104-11692020000100366&script=sci_arttext&tlng=pt.

Nelder, J. A. (1961). The fitting of a generalization of the logistic curve. Biometrics, v.17, p.89-94.

Oliveira, A. C. d., Lucas, T. C., & Iquiapaza, R. A. (2020). O que a Pandemia da Covid-19 tem nos ensinado sobre adoção de medidas de Precaução? SciELO - Scientific Electronic Library Online - Special Section COVID-19, 29, 1. https://doi.org/10.1590/1980-265X-TCE-2020-0106

OMS. (2020). Transmissão do SARS-CoV-2: implicações para as precauções de prevenção de infecção. https://www.google.com/url?sa=t&source=web&rct=j&url=https://iris.paho.org/bitstream/handle/10665.2/52472/OPASWBRACOVID-1920089_por.pdf%3Fsequence%3D1%26isAllowed%3Dy&ved=2ahUKEwijzfXlm4f0AhX5GbkGHeI-DgAQFnoECBcQAQ&usg=AOvVaw3A_kgRi8vdtriySYCdGEBR

Pereira, G. d. A., Pícoli, R. P., & Cazola, L. H. d. O. (2020). Integración del agente de combate a las endemias en la Estrategia Salud Familiar, Campo Grande, Mato Grosso do Sul, Brasil, 2017. Epidemiol. Serv. Saúde, (30), 1. https://doi.org/10.1590/S1679-49742021000100018

Ratkowsky, D. A. (1990). Handbook of nonlinear regression models (1st ed.). Marcel Dekker Inc.

Roehe, P. (2020, April 30). Coronavírus, covid-19, SARSCoV-2 e outros – um ponto de vista virológico. Jornal da Universidade. https://www.ufrgs.br/jornal/coronavirus-covid-19-sarscov-2-e-outros-um-ponto-de-vista-virologico/

Sampaio, I. B. M. (2007). Estatística aplicada à experimentação animal (3rd ed.). FEPMVZ.

Sarmento, J. L. R., Regazzi, A. J., Sousa, W. H. d., Torres, R. d. A., Breda, F. C., & Menezes, G. R. d. O. (2006). Estudo da curva de crescimento de ovinos Santa Inês. R. Bras. Zootec, 35. https://doi.org/10.1590/S1516-35982006000200014

SAS (2001). SAS user´s guide: statistical, Analysis System Institute, Inc., Cary, NC, 2001. https://www.sas.com/pt_br/curiosity.html?utm_source=google&utm_medium=cpc&utm_campaign=brand-global&utm_content=GMS-158646-gbccf&gclid=CjwKCAjwzt6LBhBeEiwAbPGOgWWG4oPlkxMwHrEEksUmuxjP12-sjEXRHQ7-WHV2JGtLHsJwLkMabBoC1REQAvD_BwE.

SESAU-TO, G. d. T. (2021, September 20). Dados Epidemiológicos (COVID-19). Integra Saúde Tocantins. Retrieved September 20, 2021, from http://integra.saude.to.gov.br/covid19/InformacoesEpidemiologicas

Shahid, Z., Kalayanamitra, R., Mcclafferty, B., Kepko, D., Ramgobin, D., Patel, R., Aggarwal, C. S., Vunnam, R., Sahu, N., Bhatt, D., Phar, K. J., Golamari, R., & Jain, R. (2020). COVID-19 e adultos mais velhos: o que sabemos. Journal of the American Geriatrics Society, (5), 1. https://doi.org/10.1111/jgs.16472

Sousa, G. J. B., Garces, T. S., Cestari, V. R. F., Moreira, T. M. M., Florêncio, R. S., & Pereira, M. L. D. (2020). Estimação e predição dos casos de COVID-19 nas metrópoles brasileiras. Rev. Latino-Am. Enfermagem, (28), 1. https://doi.org/10.1590/1518-8345.4501.3345

Taubenberger, J. K., Reid, A. H., Krafft, A. E., Bijwaard, K. E., & Fanning, T. G. (1997). Initial genetic characterization of the 1918 "Spanish" influenza virus. Science (New York, N.Y.), 275(5307), 1793–1796. https://doi.org/10.1126/science.275.5307.1793

Von Bertalanffy, L. (1957). Quantitative laws in metabolism and growth (32), 218. Quarterly Review of Biology.

Published

11/11/2021

How to Cite

NESELLO, A. L. M.; MORAES, G. N. de; ALVES, M. T.; ARAÚJO, R. O. de. Adjustment of non-linear models to Covid-19 notifications in the municipality of Palmas – Tocantins. Research, Society and Development, [S. l.], v. 10, n. 14, p. e497101422346, 2021. DOI: 10.33448/rsd-v10i14.22346. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22346. Acesso em: 17 jun. 2024.

Issue

Section

Health Sciences