Pharmacokinetic, toxicological and pharmacodynamic analysis of flavonoid quercetin isolated seeds of Bixa orellana l.
DOI:
https://doi.org/10.33448/rsd-v9i3.2242Keywords:
Quercetine; Pharmacokinetic and Toxicological Analysis; Docking Molecular.Abstract
The present study aimed to analyze in silico the pharmacokinetic and toxicological properties of quercetin flavonoid isolated from Bixa orellana seeds in order to observe the feasibility of this metabolite as a candidate for non-treatment of dyslipidemia. In addition, to endorse pharmacodynamics by means of molecular docking at HMG-CoA be reduced or by comparing as a reference drug sinvastatin and proposed or according to its mechanism of ação. For a pharmacokinetic and toxicological analysis, use the PreADMET online server and perform the predições as a basis for the structure and activity of molecules. A pharmacodynamic analysis was carried out by means of computational docking using AutoDock Vina software to obtain molecular structures and energy from target-ligand complexation. According to two ADME results, a quercetin shows pharmacokinetic and toxicological results next to sinvastatin. Either molecular docking indicou or energy value of binding of the most stable pose to the flavonoid and the target being –8.8 kcal / mol while that with sinvastatin presented the energy of –6.6 kcal / mol, evidencing that quercetin binds more stabilization of the active agent or commercial drug. A variation of the relationship between the two statistically significant binders with P <0.0001 indicating or complex quercetin-HMG-CoA was reduced as statistically more stable. I suggest that you check in vitro studies in order to confirm the ability to open HMG-CoA in order to understand the hypolipidemic effect.
References
Alliance, D., Santos, C. B. R. D., Barbosa, L. M. C., Gomes, J. S., Lobato, C. C., Viana, J. C., & Souto, R. N. P. (2017). Chemical Study, Predictions In Silico and Larvicide Activity of the Essential Oil of Root Philodendron deflexum Poepp. Journal of Computational and Theoretical Nanoscience, 14(7): 3330-3337.
Alves, V. M., Braga, R. C., & Andrade, C. H. (2018). Computational Approaches for Predicting hERG Activity. Computational Toxicology: Risk Assessment for Chemicals, 69-91.
Ando, H., Hisaka, A., & Suzuki, H. (2015). A new physiologically based pharmacokinetic model for the prediction of gastrointestinal drug absorption: translocation model. Drug Metabolism and Disposition, 43(4): 590-602.
Androutsopoulos, V. P., Papakyriakou, A., Vourloumis, D., Tsatsakis, A. M., & Spandidos, D. A. (2010). Dietary flavonoids in cancer therapy and prevention: substrates and inhibitors of cytochrome P450 CYP1 enzymes. Pharmacology & therapeutics, 126(1), 9-20.
Baigent, C., Blackwell, L., Emberson, J., Holland, L. E., Reith, C., Bhala, N., Peto, R., Barnes, E.H., Keech, U., Simes, L., & Collins, R. (2010). Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials.
Bale, B. F., Doneen, A. L., & Vigerust, D. J. (2017). High-risk periodontal pathogens contribute to the pathogenesis of atherosclerosis. Postgraduate medical journal, 93(1098): 215-220.
Benfenati, E. (Ed.). (2016). In silico methods for predicting drug toxicity. Humana Press.
Comin, E.V., Catalan-Ramos A., Iglesias-Rodal, M., Grau M., Del Val, J.L., Consola, A., Amado, E., Pons, A., Mata-Cases, M., Franzi, A., Ciurana, R., Frigola, E., Cos, X., Davins, J., & Verdu-Rotellar, J.M. (2017). Impact of implementing electronic clinical practice guidelines for the diagnosis, control and treatment of cardiovascular risk factors: A pre-post controlled study. Atencion primaria, 49(7), 389-398.
Costa, C. R., Olivi, P., Botta, C. M., & Espindola, E. L. (2008). A toxicidade em ambientes aquáticos: discussão e métodos de avaliação. Química Nova, 31(7), 1820-1830.
Cunha, E. L., Santos, C. F., Braga, F. S., Costa, J. S., Silva, R. C., Favacho, H. A., Hage- Melim, L.I, Carvalho, J.C.T., Silva, C.H.T.P., & Santos, C. B. (2015). Computational investigation of antifungal compounds using molecular modeling and prediction of ADME/Tox properties. Journal of Computational and Theoretical Nanoscience, 12(10), 3682-3691.
Da Costa Nunes, I. K. (2015). A Importância do Estudo do Metabolismo nos Estágios Iniciais de Desenvolvimento de Fármacos. Revista Virtual de Química, 7(2), 649-662.
De Araújo Silva, F., Bizerra, A. M. C., & Fernandes, P. R. D. (2018). TESTES FÍTOQUIMICOS EM EXTRATOS ORGÂNICOS DE Bixa orellana L (URUCUM). HOLOS, 2, 484-498.
De Montellano, P. R. O. (Ed.). (2010). Cytochrome P450: Structure, Mechanism, and Biochemistry. Springer Science & Business Media.
Dolabela, M. F., Silva, A. R. P. D., Ohashi, L. H., Bastos, M. L. C., Silva, M. C. M. D., & Vale, V. V. (2018). Estudo in silico das atividades de triterpenos e iridoides isolados de Himatanthus articulatus (Vahl) Woodson.
Efinger, A., O'Driscoll, CM, McAllister, M., & Fotaki, N. (2018). Previsão ADME In vitro e In silico. Em A. Talevi, e PA Quiroga (Eds.), Processos ADME em Ciências Farmacêuticas: Dosagem, Design e Farmacoterapia Sucesso Springer.
Elbarbry, F., Ung, A., & Abdelkawy, K. (2017). Studying the inhibitory effect of quercetin and thymoquinone on human cytochrome P450 enzyme activities. Pharmacognosy magazine, 13(Suppl 4), S895.
Engel, T., & Gasteiger, J. (Eds.). (2018). Applied chemoinformatics: achievements and future opportunities. John Wiley & Sons.
Florence, A., & Attwood, D. (2011). Princípios físico-químicos em farmácia. 2ª. São Paulo: Pharmabooks Editora.
Fowler, K., Fields, W., Hargreaves, V., Reeve, L., & Bombick, B. (2018). Development, qualification, validation and application of the Ames test using a VITROCELL® VC10® smoke exposure system. Toxicology reports, 5, 542-551.
Fujikawa, M., Nakao, K., Shimizu, R., & Akamatsu, M. (2007). QSAR study on permeability of hydrophobic compounds with artificial membranes. Bioorganic & medicinal chemistry, 15(11), 3756-3767.
Iqbal, D., Khan, M. S., Khan, M. S., Ahmad, S., Hussain, M. S., & Ali, M. (2015). Bioactivity guided fractionation and hypolipidemic property of a novel HMG-CoA reductase inhibitor from Ficus virens Ait. Lipids in health and disease, 14(1), 15.
Jing, Y., Easter, A., Peters, D., Kim, N., & Enyedy, I. J. (2015). In silico prediction of hERG inhibition. Future medicinal chemistry, 7(5), 571-586.
Jones, H. M., Chen, Y., Gibson, C., Heimbach, T., Parrott, N., Peters, S. A., Snoeys, J., Upreti, V.V., Zheng, S.D., & Hall, S. D. (2015). Physiologically based pharmacokinetic modeling in drug discovery and development: a pharmaceutical industry perspective. Clinical Pharmacology & Therapeutics, 97(3), 247-262.
Jónsdóttir, S. Ó., Jørgensen, F. S., & Brunak, S. (2005). Prediction methods and databases within chemoinformatics: emphasis on drugs and drug candidates. Bioinformatics, 21(10), 2145-2160.
Kanazawa, T. (2018). Development of noninvasive drug delivery systems to the brain for the treatment of brain/central nervous system diseases. Yakugaku zasshi: Journal of the Pharmaceutical Society of Japan, 138(4), 443-450.
Keemink, J., & Bergström, C. A. (2018). Caco-2 cell conditions enabling studies of drug absorption from digestible lipid-based formulations. Pharmaceutical research, 35(4), 74.
Keemink, J., & Bergström, C. A. (2018). Caco-2 cell conditions enabling studies of drug absorption from digestible lipid-based formulations. Pharmaceutical research, 35(4), 74.
Kuppusamy, P., Yusoff, M. M., Parine, N. R., & Govindan, N. (2015). Evaluation of in-vitro antioxidant and antibacterial properties of Commelina nudiflora L. extracts prepared by different polar solvents. Saudi journal of biological sciences, 22(3), 293-301.
Lima, L. R. P. D., Oliveira, T. T. D., Nagem, T. J., & Pacheco, S. (2010). Efeito de flavonoides e de corantes do urucum sobre a hiperlipidemia induzida em coelhos.
Lotufo, P. A. (2015). Cardiovascular diseases in Brazil: premature mortality, risk factors and priorities for action. Comments on the preliminary results from the Brazilian National Health Survey (PNS), 2013. Sao Paulo Medical Journal, 133(2), 69-72.
Matos, K. S. Estudos computacionais e experimentais da permeabilidade celular de candidatos a fármacos (Doctoral dissertation, Universidade de São Paulo).
Melnikov, F., Kostal, J., Voutchkova-Kostal, A., Zimmerman, J. B., & Anastas, P. T. (2016). Assessment of predictive models for estimating the acute aquatic toxicity of organic chemicals. Green Chemistry, 18(16), 4432-4445.
Mesquita, S. S., Teixeira, C. M. L. L., & Servulo, E. F. C. (2017). Carotenoides: propriedades, aplicações e mercado. Revista virtual de Química, 9(02), 672-688.
Moda, T. L. (2011). Modelagem In silico de propriedades farmacocinéticas para a avaliação de candidatos a novos fármacos (Doctoral dissertation, Universidade de São Paulo).
Norinder, U., & Bergström, C. A. (2006). Prediction of ADMET properties. ChemMedChem: Chemistry Enabling Drug Discovery, 1(9), 920-937.
Parvin, A., Yaghmaei, P., Noureddini, M., Haeri Roohani, S. A., & Aminzadeh, S. (2019). Comparative effects of quercetin and hydroalcoholic extract of Otostegia persica boiss with atorvastatin on atherosclerosis complication in male wistar rats. Food Science & Nutrition, 7(9), 2875-2887.
Pereira, A.S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 19 nov. 2019.
Pereira, L. P., Sichieri, R., Segri, N. J., Silva, R. M. V. G. D., & Ferreira, M. G. (2015). Dislipidemia autorreferida na região Centro-Oeste do Brasil: prevalência e fatores associados. Ciência & Saúde Coletiva, 20, 1815-1824.
Pillai, S., Soni, S., & Dhulap, S. (2019). Pharmacological and cosmeceutical applications of Bixa Orellana L.: A review of the scientific and patent literature. Indian Journal of Natural Products and Resources (IJNPR)[Formerly Natural Product Radiance (NPR)], 9(4), 281-289.
Pizziolo, V. R., Brasileiro, B. G., Oliveira, T. T. D., & Nagem, T. J. (2011). Plantas com possível atividade hipolipidêmica: uma revisão bibliográfica de livros editados no Brasil entre 1998 e 2008.
Ribeiro, A. G., Cotta, R. M. M., & Ribeiro, S. M. R. (2012). The promotion of health and integrated prevention of risk factors for cardiovascular diseases. Ciencia & saude coletiva, 17(1), 7.
Sharma, G., Lakkadwala, S., Modgil, A., & Singh, J. (2016). The role of cell-penetrating peptide and transferrin on enhanced delivery of drug to brain. International journal of molecular sciences, 17(6), 806.
Silva, L. S. (2013). Efeitos do beta caroteno e do urucum sobre a expressão de genes hepáticos do metabolismo do colesterol em ratas hipercolesterolêmicas.
Siqueira, A. D. S. E., Siqueira-Filho, A. G. D., & Land, M. G. P. (2017). Analysis of the Economic Impact of Cardiovascular Diseases in the Last Five Years in Brazil. Arquivos brasileiros de cardiologia, 109(1), 39-46.
Šmelcerović, A., Tomović, K., Šmelcerović, Ž., Petronijević, Ž., Kocić, G., Tomašič, T., Jakopin, Z., & Anderluh, M. (2017). Xanthine oxidase inhibitors beyond allopurinol and febuxostat; an overview and selection of potential leads based on in silico calculated physico-chemical properties, predicted pharmacokinetics and toxicity. European journal of medicinal chemistry, 135, 491-516.
Smith, J. M., Van Ness, H. C., & Abbott, M. M. (2007). Introdução à Termodinâmica da Engenharia Química, 7ª edição. LTC, Rio de Janeiro, 200.
Sosa, H. M., Sosa, Y. J., Phansalkar, S., & Stieglitz, K. A. (2017). Structural Analysis of Flavonoid/Drug Target Complexes: Natural Products as Lead Compounds for Drug Development. Nat Prod Chem Res, 5(254), 2.
Sousa, M. C. D. (2012). Estudos de modelagem molecular para previsão In Silico dos prováveis metabólitos de fase I de flavonóides.
Souza, G. H. B. D., Mello, J. C. P. D., & Lopes, N. P. (2011). Farmacognosia: coletânea científica. Editora UFOP.
Stjernschantz, E., Vermeulen, N. P., & Oostenbrink, C. (2008). Computational prediction of drug binding and rationalisation of selectivity towards cytochromes P450. Expert opinion on drug metabolism & toxicology, 4(5), 513-527.
Victor, R. J. J., Araújo, G. R., da Cruz Pádua, B., Chaves, M. M., Pedrosa, M. L., Silva, M. E., & Costa, D. C. (2011). Annato extract and β-carotene modulate the production of reactive oxygen species/nitric oxide in neutrophils from diabetic rats. Journal of clinical biochemistry and nutrition, 1112050127-1112050127.
Vilar, D. D. A., Vilar, M. S. D. A., Moura, T. F. A. D. L., Raffin, F. N., Oliveira, M. R. D., Franco, C. F. D. O.,Athayde-Filho, P.F., Diniz, M.F.F., & Barbosa-Filho, J. M. (2014). Traditional uses, chemical constituents, and biological activities of Bixa orellana L.: a review. The Scientific World Journal, 2014.
Wang, J., & Hou, T. (2015). Advances in computationally modeling human oral bioavailability. Advanced drug delivery reviews, 86, 11-16.
Wang, N. N., Dong, J., Deng, Y. H., Zhu, M. F., Wen, M., Yao, Z. J., & Cao, D. S. (2016). ADME properties evaluation in drug discovery: prediction of Caco-2 cell permeability using a combination of NSGA-II and boosting. Journal of chemical information and modeling, 56(4), 763-773.
Wilsher, N. E., Arroo, R. R., Matsoukas, M. T., Tsatsakis, A. M., Spandidos, D. A., & Androutsopoulos, V. P. (2017). Cytochrome P450 CYP1 metabolism of hydroxylated flavones and flavonols: selective bioactivation of luteolin in breast cancer cells. Food and Chemical Toxicology, 110, 383-394.
Xu, D. P., Li, Y., Meng, X., Zhou, T., Zhou, Y., Zheng, J., Zhang, J.J., & Li, H. B. (2017). Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. International journal of molecular sciences, 18(1), 96.
Xu, D., Hu, M. J., Wang, Y. Q., & Cui, Y. L. (2019). Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 24(6), 1123.
Xue, F., Nie, X., Shi, J., Liu, Q., Wang, Z., Li, X., Zhou, J., Su, J., Xue, M., Chen, W., & Wang, Y. D. (2017). Quercetin inhibits LPS-induced inflammation and ox-LDL-induced lipid deposition. Frontiers in pharmacology, 8, 40.
Yamaura, Y., Chapron, B. D., Wang, Z., Himmelfarb, J., & Thummel, K. E. (2016). Functional comparison of human colonic carcinoma cell lines and primary small intestinal epithelial cells for investigations of intestinal drug permeability and first-pass metabolism. Drug Metabolism and Disposition, 44(3), 329-335.
Yan, A. (2018). Prediction of ADME Properties. Applied Chemoinformatics: Achievements and Future Opportunities, 333-357.
Zhang, C., Zhou, Y., Gu, S., Wu, Z., Wu, W., Liu, C., Wang, k., Liu, G., Li, W., & Tang, Y. (2016). In silico prediction of hERG potassium channel blockage by chemical category approaches. Toxicology research, 5(2), 570-582.
Zhu, L., Zhao, J., Zhang, Y., Zhou, W., Yin, L., Wang, Y., Fan, Y., & Liu, H. (2018). ADME properties evaluation in drug discovery: In silico prediction of blood–brain partitioning. Molecular diversity, 22(4), 979-990.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.