Appliance of machine learning algorithm in the pharmaceutical sector: a review
DOI:
https://doi.org/10.33448/rsd-v10i15.22862Keywords:
Decision tree; Linear regression of minimums; Support vector machine; Logistic regression; Naive bayes; Pharmaceutical industry.Abstract
The pharmaceutical industry with all of its importance has been innovating and revolutionizing in the course of the time. The information technology on its segments has a crucial role so the changes can happen, and this project will show the growth situation of the pharmaceutical industry and the importance of its technology in Brazil, in the world and also the use of algorithm as essentials tools in several areas in the pharmaceutical field. During the course of this project, to its end, will be described details showing how is the industry’s outlook, pharmaceutical technologies, algorithms being important keys at problem solving, partnerships between industries, innovations for medications, medical services and treatments. This is an integrative literature review using the Google Scholar, PubMed, Scielo and Science Direct platforms to search for articles from 2003 to 2021 on the application of machine learning algorithms in the pharmaceutical area. The use of algorithms proved to be effective, facilitating the development of new drugs and in solving existing problems.
References
Al-Tahat, M. D., Jawwad, A. K. M. A., & Nahleh, Y. L. A. (2013). Ordinal logistic regression model of failure mode and effects analysis (FMEA) in pharmaceutical tabletting tools. Engineering Failure Analysis, 27, 322-332.
Andreas, C. J., Rosenberger, J., Butler, J., Augustijns, P., McAllister, M., Abrahamsson, B., & Dressman, J. (2018). Introduction to the OrBiTo decision tree to select the most appropriate in vitro methodology for release testing of solid oral dosage forms during development. European Journal of Pharmaceutics and Biopharmaceutics, 130, 207-213.
Andri, B., Dispas, A., Marini, R. D. E. A., Hubert, P., Sassiat, P., Al Bakain, R., ... & Vial, J. (2017). Combination of partial least squares regression and design of experiments to model the retention of pharmaceutical compounds in supercritical fluid chromatography. Journal of Chromatography A, 1491, 182-194.
Anwar, B. H., Abdelhamid, N. S., Magdy, M. A., & Naguib, I. A. (2020). Linear support vector regression and partial least-squares for determination of dapoxetine hydrochloride and tadalafil in binary pharmaceutical mixtures. Journal of AOAC International, 103(1), 132-139.
Arsene, C. Artificial Intelligence & Pharma: o que vem a seguir? Digital Authority Partners, 04 August 2020.
Balbinotto Neto, Giácomo. Análise de decisão aplicada à farmacoeconomia. In Instituto de Avaliação de Tecnologia em Saúde. P. 1-303, 23. Porto Alegre.
Bulgaru, I. Indústria farmacêutica na era da inteligência artificial: o futuro é brilhante. 12 May 2020.
Burbidge, R., Trotter, M., Buxton, B., & Holden, S. (2001). Drug design by machine learning: support vector machines for pharmaceutical data analysis. Computers & chemistry, 26(1), 5-14.
Burgalassi, S., Ceccanti, S., Vecchiani, S., Leonangeli, G., Federigi, I., Carducci, A., & Verani, M. (2021). Objectionable microorganisms in pharmaceutical production: Validation of a decision tree. European Journal of Pharmaceutical Sciences, 166, 105984.
Cabral, C. I. S. (2013). Aplicação do modelo de regressão logística num estudo de mercado (Doctoral dissertation).
Camargo, A. C. M. Inovações farmacêuticas no Brasil. In Uniemp Inovação. ano I, n. 1, september 2004.
Gadelha, C. A. G. (2012). A dinâmica do sistema produtivo da saúde: inovação e complexo econômico-industrial. Editora Fiocruz.
Gomes, R. D. P., Pimentel, V. P., Cardoso, M. L., & Pieroni, J. P. (2014). O novo cenário de concorrência na indústria farmacêutica brasileira.
Herneisey, M., Lambert, E., Kachel, A., Shychuck, E., Drennen, J. K., & Janjic, J. M. (2019). Quality by design approach using multiple linear and logistic regression modeling enables microemulsion scale up. Molecules, 24(11), 2066.
Ilyas, H., Masih, I., & van Hullebusch, E. D. (2021). A decision tree framework to support design, operation, and performance assessment of constructed wetlands for the removal of emerging organic contaminants. Science of the Total Environment, 760, 143334.
Indraja, B., & Annapurani, K. (2018). Classification of medicines using naive bayes classifier. Research Journal of Pharmacy and Technology, 11(5), 1940-1944.
Rojas Jesus, A. D. R. (2018). A indústria farmacêutica: um estudo focado nos tratados internacionais e no comércio exterior do Peru.
Koerich, G. V., de Lorenzi Cancellier, É. L. P., & Tezza, R. (2014). Capacidade de absorção em pequenas empresas: proposição de um instrumento de medição. VII Encontro de estudos em empreendedorismo e gestão de pequenas empresas (EGEPE). Goiânia, 01-18.
Koromina, M., Pandi, M. T., & Patrinos, G. P. (2019). Rethinking drug repositioning and development with artificial intelligence, machine learning, and omics. Omics: a journal of integrative biology, 23(11), 539-548.
Liu, P., & Zeng, Z. (2021). Evaluation of financial credit risk on pharmaceutical supply chain based on support vector machine. In Journal of Physics: Conference Series (Vol. 1774, No. 1, p. 012030). IOP Publishing.
Lobato, A. O. C., & Ortiz, R. M. (2019). A inovação e a proteção da propriedade intelectual no Brasil: análise da dependência nacional da tecnologia farmacêutica estrangeira. Revista GEINTEC, 9(1), 4809-4824.
Mak, K. K., & Pichika, M. R. (2019). Artificial intelligence in drug development: present status and future prospects. Drug discovery today, 24(3), 773-780.
Medeiros, A. R. C., Araújo, Y. B. D., Vianna, R. P. D. T., & Moraes, R. M. D. (2014). Modelo de suporte à decisão aplicado à identificação de indivíduos não aderentes ao tratamento anti-hipertensivo. Saúde em debate, 38, 104-118.
Mesquita, M. A. D., & Santoro, M. C. (2004). Análise de modelos e práticas de planejamento e controle da produção na indústria farmacêutica. Production, 14, 64-77.
Nishijima, M., Biasoto Jr, G., & Lagroteria, E. (2014). A competição no mercado farmacêutico brasileiro após uma década de medicamentos genéricos: uma análise de rivalidade em um mercado regulado. Economia e sociedade, 23, 155-186.
Norinder, U. (2003). Support vector machine models in drug design: applications to drug transport processes and QSAR using simplex optimisations and variable selection. Neurocomputing, 55(1-2), 337-346.
Paula, G. N. D. (2001). Os desafios da indústria farmacêutica global e o redesenho do negócio pela Merck. Revista de Administração de Empresas, 41, 76-87.
Santos, M. C. B. G., & Pinho, M. (2012). Estratégias tecnológicas em transformação: um estudo da indústria farmacêutica brasileira. Gestão & Produção, 19, 405-418.
Souza, R. C., & Raminelli, J. Aplicação do modelo linear na avaliação de dados de estabilidade de medicamento. Semina: Ciências Exatas e Tecnológicas, 34(1), 57-66.
Tierney, S. Artificial intelligence in pharma: utilising a valuable resource. In European Pharmaceutical Review. P. 1-1, 10 March. 2020.
Torres, R. L. (2015). Capacitação tecnológica na indústria farmacêutica brasileira. Rio de Janeiro: UFRJ (Tese de Doutorado em Economia da Indústria e da Tecnologia).
Vargas, M. A. (2017). Indústria de base química no Brasil: potencialidades, desafios e nichos estratégicos. Gadelha P, Gadelha CAG, Noronha JC, Pereira TR, organizadores. Brasil Saúde Amanhã: complexo econômico industrial da saúde. Rio de Janeiro: Editora Fiocruz.
Whittemore, R.; Knafl, K. The integrative review: updated methodology. Journal of advanced nursing, 52(5), 546-553, 2000.
Zhang, H., Mao, J., Qi, H. Z., Xie, H. Z., Shen, C., Liu, C. T., & Ding, L. (2020). Developing novel computational prediction models for assessing chemical-induced neurotoxicity using naïve Bayes classifier technique. Food and Chemical Toxicology, 143, 111513.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Tarcio Correia de Campos; Tibério Cesar Lima de Vasconcelos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.