Recent advances (2016 - 2020) in green synthesis of metal oxide nanoparticles: An overview

Authors

DOI:

https://doi.org/10.33448/rsd-v10i16.23406

Keywords:

Green chemistry; Ceramics; Synthesis route; Nanomaterials.

Abstract

The development of products and processes which are more ecological has been a source of interest in research in recent decades. Thus, researchers have developed several methods to improve the synthesis of oxides and metals in a more ecological way. Green synthesis has become a method that is being widely used for presenting low temperature, low cost and great availability of raw material. Some biological sources such as fungi, bacteria and plants are used in this route, but plant extracts are the most used in the literature. Various parts of the plant such as the roots, bark, flowers, fruits, stem, seeds, and leaves are rich in secondary metabolites such as: flavonoids, phenols, steroids, terpenoids, alkaloids, saponins and phenolic compounds, which play an essential role in the complexation, polymerization, capping and stabilization processes that generate oxides. The methodology used in the synthesis process significantly interferes in some properties and characteristics of the same oxide as its morphology. In this sense, this paper presents a review on green synthesis in obtaining oxides and their morphologies.

Author Biographies

Rodolfo Luiz Bezerra de Araújo Medeiros, Federal Institute of Education, Science and Technology of Maranhão

Postgraduate Program in Chemistry, Department of Chemistry, Federal Institute of Education, Science and Technology of Maranhão – IFMA, São Luís, MA, Brazil.

Marcelo Moizinho Oliveira, Federal Institute of Education, Science and Technology of Maranhão

Postgraduate Program in Chemistry, Department of Chemistry, Federal Institute of Education, Science and Technology of Maranhão – IFMA, São Luís, MA, Brazil.

Gilvan Pereira de Figueredo, Federal Institute of Education, Science and Technology of Maranhão

Postgraduate Program in Chemistry, Department of Chemistry, Federal Institute of Education, Science and Technology of Maranhão – IFMA, São Luís, MA, Brazil.

References

Aarthye, P., & Sureshkumar, M. (2021). Green synthesis of nanomaterials: An overview. Materials Today: Proceedings, 10.1016/j.matpr.2021.04.564.

Abdeen, M., Sabry, S., Ghozlan, H., El-Gendy, A. A., & Carpenter, E. E. (2016). Microbial-Physical Synthesis of Fe and Fe3O4 Magnetic Nanoparticles Using Aspergillus Niger YESM1 and Supercritical Condition of Ethanol. Journal of Nanomaterials, 2016. 10.1155/2016/9174891

Abinaya, S., Kavitha, H. P., Prakash, M., & Muthukrishnaraj, A. (2021). Green synthesis of magnesium oxide nanoparticles and its applications: A review. Sustainable Chemistry and Pharmacy, 19(September 2020), 100368. 10.1016/j.scp.2020.100368

Akintelu, S. A., Folorunso, A. S., Folorunso, F. A., & Oyebamiji, A. K. (2020). Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon, 6(7), e04508. 10.1016/j.heliyon.2020.e04508

Alasvand, K., & Ravishankar, Z. V. (2016). Inhibition of a sulfate reducing bacterium, Desulfovibrio marinisediminis GSR3, by biosynthesized copper oxide nanoparticles. 3 Biotech, 6(1), 1–7. 10.1007/s13205-016-0403-0

Balraj, B., Senthilkumar, N., Siva, C., Krithikadevi, R., Julie, A., Potheher, I. V., & Arulmozhi, M. (2017). Synthesis and characterization of Zinc Oxide nanoparticles using marine Streptomyces sp. with its investigations on anticancer and antibacterial activity. Research on Chemical Intermediates, 43(4), 2367–2376. 10.1007/s11164-016-2766-6

Bandeira, M., Giovanela, M., Roesch-Ely, M., Devine, D. M., & da Silva Crespo, J. (2020). Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy, 15, 100223. 10.1016/j.scp.2020.100223.

Bibi, I., Nazar, N., Ata, S., Sultan, M., Ali, A., Abbas, A., Jilani, K., Kamal, S., Sarim, F. M., Khan, M. I., Jalal, F., & Iqbal, M. (2019). Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. Journal of Materials Research and Technology, 8(6), 6115–6124. 10.1016/j.jmrt.2019.10.006

Chen, L., Batjikh, I., Hurh, J., Han, Y., Huo, Y., Ali, H., Li, J. F., Rupa, E. J., Ahn, J. C., Mathiyalagan, R., & Yang, D. C. (2019). Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene blue. Optik, 184(January), 324–329. 10.1016/j.ijleo.2019.03.051

Chinnasamy, C., Tamilselvam, P., Karthick, B., Sidharth, B., & Senthilnathan, M. (2018). Green Synthesis, Characterization and Optimization Studies of Zinc Oxide Nano Particles Using Costusigneus Leaf Extract. Materials Today: Proceedings, 5(2), 6728–6735. 10.1016/j.matpr.2017.11.331.

Das, K. R., Kowshik, M., Praveen Kumar, M. K., Kerkar, S., Shyama, S. K., & Mishra, S. (2018). Native hypersaline sulphate reducing bacteria contributes to iron nanoparticle formation in saltpan sediment: A concern for aquaculture. Journal of Environmental Management, 206, 556–564. 10.1016/j.jenvman.2017.10.078

Das, R. K., & Brar, S. K. (2013). Plant mediated green synthesis: Modified approaches. Nanoscale, 5(21), 10155–10162. 10.1039/c3nr02548a

Devatha, C. P., Jagadeesh, K., & Patil, M. (2018). Environmental Nanotechnology, Monitoring & Management E ff ect of Green synthesized iron nanoparticles by Azardirachta Indica in di ff erent proportions on antibacterial activity. Environmental Nanotechnology, Monitoring & Management, 9, 85–94. 10.1016/j.enmm.2017.11.007

Dubey, S., Kumar, J., Kumar, A., & Sharma, Y. C. (2018). Facile and green synthesis of highly dispersed cobalt oxide (Co3O4) nano powder: Characterization and screening of its eco-toxicity. Advanced Powder Technology, 29(11), 2583–2590. 10.1016/j.apt.2018.03.009

Dutta, S., Jaiswal, K. K., Verma, R., Basavaraju, D. M., & Ramaswamy, A. P. (2019). Green synthesis of zinc oxide catalyst under microwave irradiation using banana (Musa spp.) corm (rhizome) extract for biodiesel synthesis from fish waste lipid. Biocatalysis and Agricultural Biotechnology, 22, 101390. 10.1016/j.bcab.2019.101390

El-batal, A. I., Al-hazmi, N. E., Mosallam, F. M., & El-sayyad, G. S. (2018). Microbial Pathogenesis Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. Microbial Pthogenesis, 118(March), 159–169. 10.1016/j.micpath.2018.03.013

El-sayyad, A. I. E. G. S. (2019). Penicillium chrysogenum -Mediated Mycogenic Synthesis of Copper Oxide Nanoparticles Using Gamma Rays for In Vitro Antimicrobial Activity Against Some Plant Pathogens. Journal of Cluster Science, 3. 10.1007/s10876-019-01619-3

Eltarahony, M., Zaki, S., & Abd-el-haleem, D. (2018). Concurrent Synthesis of Zero- and One-Dimensional, Spherical, Rod, Needle, and Wire-Shaped CuO Nanoparticles by Proteus mirabilis 10B. 2018.

Fazlzadeh, M., Rahmani, K., Zarei, A., Abdoallahzadeh, H., Nasiri, F., & Khosravi, R. (2017). A novel green synthesis of zero valent iron nanoparticles ( NZVI) using three plant extracts and their efficient application for removal of Cr ( VI ) from aqueous solutions. Advanced Powder Technology, 28(1), 122–130. 10.1016/j.apt.2016.09.003

Fink, A. (2019). Conducting Research Literature Reviews: From the Internet to Paper (SAGE Publi).

Fouda, A., EL-Din Hassan, S., Salem, S. S., & Shaheen, T. I. (2018). In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microbial Pathogenesis, 125(September), 252–261. 10.1016/j.micpath.2018.09.030

Ghasemi, N., Jamali-sheini, F., & Zekavati, R. (2017). CuO and Ag / CuO nanoparticles: Biosynthesis and antibacterial properties. Materials Letters, 196, 78–82. 10.1016/j.matlet.2017.02.111

Gowri, M., Latha, N., & Rajan, M. (2019). Copper Oxide Nanoparticles Synthesized Using Eupatorium odoratum, Acanthospermum hispidum Leaf Extracts, and Its Antibacterial Effects Against Pathogens: a Comparative Study. BioNanoScience, 9(3), 545–552. 10.1007/s12668-019-00655-7

Gupta, K., & Chundawat, T. S. (2020). Zinc oxide nanoparticles synthesized using Fusarium oxysporum to enhance bioethanol production from rice-straw. Biomass and Bioenergy, 143(July), 105840. 10.1016/j.biombioe.2020.105840

Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes-A review. Colloids and Surfaces B: Biointerfaces, 121, 474–483. 10.1016/j.colsurfb.2014.05.027

Ibrahem, E., Thalij, K., & Badawy, A. (2017). Antibacterial Potential of Magnesium Oxide Nanoparticles Synthesized by Aspergillus niger. Biotechnology Journal International, 18(1), 1–7. 10.9734/bji/2017/29534

Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638–2650. 10.1039/c1gc15386b

Jacob, P. J., Masarudin, M. J., Hussein, M. Z., & Rahim, R. A. (2019). Optimization of process parameters in fl uencing the sustainable construction of iron oxide nanoparticles by a novel tropical wetlands. Journal of Cleaner Production, 232, 193–202. 10.1016/j.jclepro.2019.05.359

Jeevanandam, J., Chan, Y. S., & Danquah, M. K. (2017). Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. New Journal of Chemistry, 41(7), 2800–2814. 10.1039/c6nj03176e

Kalpana, V. N., Kataru, B. A. S., Sravani, N., Vigneshwari, T., Panneerselvam, A., & Devi Rajeswari, V. (2018). Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies. OpenNano, 3(June), 48–55. 10.1016/j.onano.2018.06.001

Karpagavinayagam, P., & Vedhi, C. (2019). Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum, 160(12159), 286–292. 10.1016/j.vacuum.2018.11.043

Khan, Z. U. H., Sadiq, H. M., Shah, N. S., Khan, A. U., Muhammad, N., Hassan, S. U., Tahir, K., safi, S. Z., Khan, F. U., Imran, M., Ahmad, N., Ullah, F., Ahmad, A., Sayed, M., Khalid, M. S., Qaisrani, S. A., Ali, M., & Zakir, A. (2019). Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications. Journal of Photochemistry and Photobiology B: Biology, 192(November 2018), 147–157. 10.1016/j.jphotobiol.2019.01.013

Khatami, M., Alijani, H. Q., Heli, H., & Sharifi, I. (2018). Rectangular shaped zinc oxide nanoparticles: Green synthesis by Stevia and its biomedical efficiency. Ceramics International, 44(13), 15596–15602. 10.1016/j.ceramint.2018.05.224

Kouhkan, M., Ahangar, P., Babaganjeh, L. A., & Allahyari-devin, M. (2020). Biosynthesis of Copper Oxide Nanoparticles Using. 101–111. 10.2174/1573413715666190318155801

Kovačec, E., Regvar, M., van Elteren, J. T., Arčon, I., Papp, T., Makovec, D., & Vogel-Mikuš, K. (2017). Kovačec2017.pdf. Chemosphere Journal, 180, 178–185.

Kumar, B. P., Arthanareeswari, M., Devikala, S., Sridharan, M., Arockia selvi, J., & Pushpa malini, T. (2019). Green synthesis of zinc oxide nanoparticles using typha latifolia. L leaf extract for photocatalytic applications. Materials Today: Proceedings, 14, 332–337. 10.1016/j.matpr.2019.04.155

Lu, J., Ali, H., Hurh, J., Han, Y., Batjikh, I., Rupa, E. J., Anandapadmanaban, G., Park, J. K., & Yang, D. C. (2019). The assessment of photocatalytic activity of zinc oxide nanoparticles from the roots of Codonopsis lanceolata synthesized by one-pot green synthesis method. Optik, 184(March), 82–89. 10.1016/j.ijleo.2019.03.050

Lüdke, M., & André, M. E. D. A. (2012). Pesquisa em educação: abordagens qualitativas (E.P.U).

Maruthupandy, M., Zuo, Y., Chen, J. S., Song, J. M., Niu, H. L., Mao, C. J., Zhang, S. Y., & Shen, Y. H. (2017). Synthesis of metal oxide nanoparticles (CuO and ZnO NPs) via biological template and their optical sensor applications. Applied Surface Science, 397, 167–174. 10.1016/j.apsusc.2016.11.118

Moghaddas, T. H. S. M., Elahi, B., Darroudi, M., & Javanbakht, V. (2019). Green synthesis of hexagonal-shaped zinc oxide nanosheets using mucilage from flaxseed for removal of methylene blue from aqueous solution. Journal of Molecular Liquids, 296, 111834. 10.1016/j.molliq.2019.111834

Mohamed, A. A., Fouda, A., Abdel-Rahman, M. A., Hassan, S. E. D., El-Gamal, M. S., Salem, S. S., & Shaheen, T. I. (2019). Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatalysis and Agricultural Biotechnology, 19(January), 101103. 10.1016/j.bcab.2019.101103

Mohanasrinivasan, V., Subathra Devi, C., Mehra, A., Prakash, S., Agarwal, A., Selvarajan, E., & Jemimah Naine, S. (2018). Biosynthesis of MgO Nanoparticles Using Lactobacillus Sp. and its Activity Against Human Leukemia Cell Lines HL-60. BioNanoScience, 8(1), 249–253. 10.1007/s12668-017-0480-5

Moraes, L. C., Figueiredo, R. C., Ribeiro-andrade, R., Arantes, L., Giani, A., Figueredo, C. C., & Pontes-silva, A. V. (2021). High diversity of microalgae as a tool for the synthesis of different silver nanoparticles: A species-specific green synthesis. 42(May). 10.1016/j.colcom.2021.100420

Mousa, A. M., Abdel, O. A., Al-hagar, O. E. A., Gizawy, M. A., Allan, K. F., & Attallah, M. F. (2020). Biosynthetic new composite material containing CuO nanoparticles produced by Aspergillus terreus for 47 Sc separation of cancer theranostics application from irradiated Ca target. Applied Radiation and Isotopes, 166(July), 109389. 10.1016/j.apradiso.2020.109389

Muthuvinothini, A., & Stella, S. (2019). Green synthesis of metal oxide nanoparticles and their catalytic activity for the reduction of aldehydes. Process Biochemistry, 77(July 2018), 48–56. 10.1016/j.procbio.2018.12.001

Nadeem, M., Khan, R., Afridi, K., Nadhman, A., Ullah, S., & Faisal, S. (2020). Green Synthesis of Cerium Oxide Nanoparticles (CeO 2 NPs ) and Their Antimicrobial Applications : A Review. International Journal of Nanomedicine, 15, 5951–5961.

Narendhran, S., Manikandan, M., & Baby Shakila, P. (2019). Antibacterial, antioxidant properties of Solanum trilobatum and sodium hydroxide-mediated magnesium oxide nanoparticles: A green chemistry approach. Bulletin of Materials Science, 42(3). 10.1007/s12034-019-1811-7

Nasrollahzadeh, M., Sajadi, S. M., Rostami-Vartooni, A., & Hussin, S. M. (2016). Green synthesis of CuO nanoparticles using aqueous extract of Thymus vulgaris L. leaves and their catalytic performance for N-arylation of indoles and amines. Journal of Colloid and Interface Science, 466, 113–119. 10.1016/j.jcis.2015.12.018

Nisha, B., Vidyalakshmi, Y., & Razack, S. A. (2020). Enhanced formation of ruthenium oxide nanoparticles through green synthesis for highly efficient supercapacitor applications. Advanced Powder Technology, 31(3), 1001–1006. 10.1016/j.apt.2019.12.026

Olajire, A. A., & Mohammed, A. A. (2020). Green synthesis of nickel oxide nanoparticles and studies of their photocatalytic activity in degradation of polyethylene films. Advanced Powder Technology, 31(1), 211–218. 10.1016/j.apt.2019.10.012

Ramalingam, R., Fazil, M. H. U. T., Verma, N. K., & Arunachalam, K. D. (2019). Green synthesis, characterization and antibacterial evaluation of electrospun nickel oxide nanofibers. Materials Letters, 256, 126616. 10.1016/j.matlet.2019.126616

Ramanarayanan, R., Bhabhina, N. M., Dharsana, M. V., Nivedita, C. V., & Sindhu, S. (2018). Green synthesis of zinc oxide nanoparticles using extract of Averrhoa bilimbi(L) and their photoelectrode applications. Materials Today: Proceedings, 5(8), 16472–16477. 10.1016/j.matpr.2018.05.150

Rao, T. N., Riyazuddin, Babji, P., Ahmad, N., Khan, R. A., Hassan, I., Shahzad, S. A., & Husain, F. M. (2019). Green synthesis and structural classification of Acacia nilotica mediated-silver doped titanium oxide (Ag/TiO2) spherical nanoparticles: Assessment of its antimicrobial and anticancer activity. Saudi Journal of Biological Sciences, 26(7), 1385–1391. 10.1016/j.sjbs.2019.09.005

Rehana, D., Mahendiran, D., Kumar, R. S., & Rahiman, A. K. (2017). Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomedicine and Pharmacotherapy, 89, 1067–1077. 10.1016/j.biopha.2017.02.101

Saravanakumar, K., Shanmugam, S., & Babu, N. (2019). Journal of Photochemistry & Photobiology , B : Biology Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. Journal of Photochemistry & Photobiology, B: Biology, 190(June 2018), 103–109. 10.1016/j.jphotobiol.2018.11.017

Downloads

Published

15/12/2021

How to Cite

ROCHA, M. B. da C. .; ARAÚJO, T. R. de .; MEDEIROS, R. L. B. de A. .; OLIVEIRA, M. M. .; FIGUEREDO, G. P. de . Recent advances (2016 - 2020) in green synthesis of metal oxide nanoparticles: An overview. Research, Society and Development, [S. l.], v. 10, n. 16, p. e399101623406, 2021. DOI: 10.33448/rsd-v10i16.23406. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23406. Acesso em: 25 apr. 2024.

Issue

Section

Exact and Earth Sciences