Evaluation, diagnosis and recovery of hydraulic concrete flooring in stretches located in Natal/RN City and in the Metropolitan Region
DOI:
https://doi.org/10.33448/rsd-v10i16.23448Keywords:
Pavements Defects; Pavements diagnosis; Rigid pavements.Abstract
The paving of roads plays an important role among infrastructure works essential for urban dynamics. Wear is inevitable and inherent in its use. Monitoring the various defects due to the use of roads is an essential task for maintaining its functionality and safety. In this regard, this article aims to evaluate, diagnose and propose recovery and maintenance techniques for the concrete pavement lanes in two urban avenues in the city of Natal/RN and its metropolitan area. Despite both avenues were contemplated with a recovery/restructuring approximately five years ago, they present several pathologies in the concrete slabs of the rigid pavement. The objective assessment methodology used in this study was proposed by the National Department of Transportation Infrastructure (DNIT) in the Rigid Pavement Recovery Manual, along with visual inspections. The avenues were classified as Good. On the contrary, field observations showed the lack of repairs and maintenance services at several points. The frequency of simpler defects can be considered high, even in the absence of more serious defects. This highlights the importance of rigorous design practices, as well as the construction, the constant maintenance of the road, which are frequently neglected.
References
Al-Hedad, A. S. A. & Hadi, M. N. S. (2018). Effect of geogrid reinforcement on the flexural behaviour of concrete pavements. Road Materials and Pavement Design. 20(5), 1005-25, http://dx.doi.org/10.1080/14680629. 2018.1428217.
Balbo, José Tadeu (2009). Pavimentos de Concreto. Oficina de Textos.
Chen, D.; Lin, H.; Sun, R. (2010) Field performance evaluations of partial-depth repairs. Construction and Building Materials, V.25(3), 1369-1378. http://dx.doi.org/10.1016/j.conbuildmat. 2010.09.007.
Consórcio Ebei MWH Brasil (2010). Reestruturação geométrica da Av. Capitão Mor Gouveia: Projeto de Pavimentação – detalhes das placas de concreto e das juntas de dilatação. Revisão: 003.
Departamento Nacional de Infraestrutura de Transporte – DNIT (2010). Manual de Recuperação de Pavimentos Rígidos. Instituto de Pesquisas Rodoviárias, Rio de Janeiro.
Departamento Nacional de Infraestrutura de Transporte – DNIT (2017). Glossário de Termos Técnicos Rodoviários. Instituto de Pesquisas Rodoviárias, Rio de Janeiro.
Hassan, M. M., Dylla, H., Mohammad, L. & Rupnow, T. (2010). Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavement. Construction and Building Materials, 24(8), 1456-1461. http://dx.doi.org/10.1016/j.conbuildmat.2010.01.009.
Lima, M. (2016). Ritmo lento marca obras do KM-6. Tribuna do Norte, Natal/RN. http://www.tribunadonorte.com.br/noticia/ritmo- lento-marca-obras-do-km-6/340637.
Maia, I. M. C. (2012). Caraterização De Patologias Em Pavimentos Rodoviários. 2012. 97 f. Dissertação (Mestrado) - Curso de Engenharia Civil, Faculdade de Engenharia, Universidade do Porto, Porto.
Mendonça Filho, J. M. & Rocha, E. G. A. (2018). Estudo Comparativo entre Pavimentos Flexível e Rígido na Pavimentação Rodoviária. Revista Científica Multidisciplinar Núcleo do Conhecimento. Ano 03, 6(2), 146-163.
Nobili, A., Lanzoni, L. & Tarantino, A. M (2013). Experimental investigation and monitoring of a polypropylene-based fiber reinforced concrete road pavement. Construction and Building Materials, 47, 888-895. http://dx.doi.org/10.1016/j.conbuildmat.2013.05.077.
Park, C., Jang, C., Lee, S. W & Won, J. P. (2008). Microstructural investigation of long-term degradation mechanisms in GFRP dowel bars for jointed concrete pavement. Journal of Applied Polymer Science, 108, 3128-3137. http://dx.doi.org/10.1002/app.27946.
Sadati, A. & Khayat, K. (2016) Field performance of concrete pavement incorporating recycled concrete aggregate. Construction and Building Materials, 126, 691-700. http://dx.doi.org/10.1016/j.conbuildmat.2016.09.087.
Salemi, N. & Behfarnia, K (2013). Effect of nano-particles on durability of fiber-reinforced concrete pavement. Construction and Building Materials, 48, 934-941. http://dx.doi.org/10.1016/j.conbuildmat.2013.07.037.
Shahin, M. Y. & Kohn, S. D. (1979) Technical Report – Construction and Engineering Research Laboratory: Development of a pavement condition rating procedure for roads, streets and parking lots. Department of Defense, Department of the Army, Construction Engineering Research Laboratory.
Silva, J. E. M. & Carneiro, L. A. V. (2014). Pavimentos de Concreto: Histórico, Tipos e Modelos de Fadiga. Seção de Engenharia de Fortificação e Construção, Instituto Militar de Engenharia.
Vahedifard, F., Nili, M. & Meehan, C. L (2010). Assessing the effects of supplementary cementitious materials on the performance of low-cement roller compacted concrete pavement. Construction and Building Materials, 24, 2528-2535. http://dx.doi.org/10.1016/j.conbuildmat.2010. 06.003.
Yeon, J. H. (2015) Implications of zero-stress temperature for the long-term behavior and performance of continuously reinforced concrete pavement. Construction and Building Materials, 91, 94-101. http://dx.doi. org/10.1016/j.conbuildmat.2015.05.043.
Zhi S. , Gun, W. W., Hui, L, X & Bo, T. (2011). Evaluation of fatigue crack behavior in asphalt concrete pavements with different polymer modifiers. Construction and Building Materials, 27, 117-125. http://dx.doi. org/10.1016/j.conbuildmat.2011.08.017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Arthur Vinícius da Costa Viana; Osvaldo de Freitas Neto; Fagner Alexandre Nunes de França; Enio Fernandes Amorim
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.