Bioactive potential of riparina synthetic analogs: a systematic review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i16.23510

Keywords:

Aniba riparia; Bioprospecting; Pharmacologic actions.

Abstract

Objective: To carry out a systematic review of studies with synthetic analogues of Aniba riparia, riparins A, B, C, D, E and F, in order to highlight the pharmacological potentials already elucidated. Methodology: Three databases were used to select the articles to be included in the Embase, Pubmed and Web of Science review, with the following simplified search strategy (Riparin or Aniba riparia), at the end of the selection, resulting in 10 articles for the elaboration of this work. Results: Publications of studies with synthetic derivatives were identified between the years 2014 to 2021. Most of the researches used riparin A, followed by B, and all were pre-clinical studies. Important pharmacological effects have been reported, such as antibacterial, antifungal, anti-inflammatory, antinociceptive, antitumor, immunomodulatory, antiprotozoal, antiparasitic, anxiolytic and antioxidant activities. Discussion: Studies carried out with synthetic analogues have placed them as possible therapeutic tools, considering the important pharmacological activities already reported. Conclusion: However, considering that the literature already reports six synthetic riparins, the number of articles published aimed at elucidating possible pharmacological activities seems small, even though they are promising candidates for the development of research aimed at discovering new drugs.

References

Appolinário, P. P., Derogis, P. B. M. C., Yamaguti, T. H., & Miyamoto, S. (2011). Metabolismo, oxidação e implicações biológicas do ácido docosahexaenoico em doenças neurodegenerativas. Química Nova, 34(8), 1409–1416. https://doi.org/10.1590/S0100-40422011000800021

Araújo, É. J. F. de, Lima, L. K. F., Silva, O. A., Júnior, L. M. R., Gutierrez, S. J. C., Carvalho, F. A. de A., Lima, F. das C. A., Pessoa, C., Freitas, R. M. de, & Ferreira, P. M. P. (2016). In vitro antioxidant, antitumor and leishmanicidal activity of riparin A, an analog of the Amazon alkamides from Aniba riparia (Lauraceae). Acta Amazonica, 46(3), 309–314. https://doi.org/10.1590/1809-4392201505436

Araújo, É. J. F. de, Rezende-Júnior, L. M., Lima, L. K. F., Silva-Júnior, M. P. da, Silva, O. A., Sousa Neto, B. P. de, Almeida, A. A. C. de, Gutierrez, S. J. C., Tomé, A. da R., Lopes, L. da S., Ferreira, P. M. P., & Lima, F. das C. A. (2018). Pathophysiological investigations, anxiolytic effects and interaction of a semisynthetic riparin with benzodiazepine receptors. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 103, 973–981. https://doi.org/10.1016/j.biopha.2018.04.130

Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 20(3), 200–216. https://doi.org/10.1038/s41573-020-00114-z

Balunas, M. J., & Kinghorn, A. D. (2005). Drug discovery from medicinal plants. Life Sciences, 78(5), 431–441. https://doi.org/10.1016/j.lfs.2005.09.012

Barbosa Filho, J. M., Silva, E. C., & Bhattacharyya, J. (1990). Synthesis of Several New Phenylethylamides of Substituted Benzoic Acids. Química Nova, 13(4), 332–334.

Carvalho, A. M. R., Rocha, N. F. M., Vasconcelos, L. F., Rios, E. R. V., Dias, M. L., Silva, M. I. G., de França Fonteles, M. M., Filho, J. M. B., Gutierrez, S. J. C., & de Sousa, F. C. F. (2013). Evaluation of the anti-inflammatory activity of riparin II (O-methil-N-2-hidroxi-benzoyl tyramine) in animal models. Chemico-Biological Interactions, 205(3), 165–172. https://doi.org/10.1016/j.cbi.2013.07.007

Castelo-Branco, U. V., Castelo-Branco, U. J. V., Thomas, G., Araújo, C. C. de, & Barbosa-Filho, J. M. (2000). Preliminary Pharmacological Studies on three Benzoyl Amides, constituents of Aniba riparia (Nees) Mez (Lauraceae). Acta Farm. Bonaerense, 19(3), 197–202.

Catão, R. M. R., Barbosa Filho, J. M., Gutierrez, S. J. C., Lima, E. de O., Pereira, M. do S. V., Arruda, T. A., & Antunes, R. M. P. (2005). Avaliação da atividade antimicrobiana de riparinas sobre cepas de Staphylococcus aureus e Escherichia coli multirresistentes. Rev. Bras. Anal. Clin, 247–249.

Costa, L. M., Alves, M. M. de M., Brito, L. M., Abi-Chacra, E. de A., Barbosa-Filho, J. M., Gutierrez, S. J. C., Barreto, H. M., & Carvalho, F. A. de A. (2021a). In vitro antileishmanial and immunomodulatory activities of the synthetic analogue riparin E. Chemico-Biological Interactions, 336, 109389. https://doi.org/10.1016/j.cbi.2021.109389

Costa, L. M., Macedo, E. V, Oliveira, F. A. A., Ferreira, J. H. L., Gutierrez, S. J. C., Peláez, W. J., Lima, F. C. A., de Siqueira Júnior, J. P., Coutinho, H. D. M., Kaatz, G. W., de Freitas, R. M., & Barreto, H. M. (2016). Inhibition of the NorA efflux pump of Staphylococcus aureus by synthetic riparins. Journal of Applied Microbiology, 121(5), 1312–1322. https://doi.org/10.1111/jam.13258

Costa, L. M., Sousa, J. N., Braz, D. C., Ferreira, J. H. L., Nogueira, C. E. S., Barbosa-Filho, J. M., Lima-Neto, J. S. S., Gutierrez, S. J. C., Abi-chacra, É. A., & Barreto, H. M. (2021b). Mechanism of the lethal effect of Riparin E against bacterial and yeast strains. Microbial Pathogenesis, 157, 104968. https://doi.org/10.1016/j.micpath.2021.104968

Costa, P. R. R. (2009). Natural products as starting point for the discovery of new bioactive compounds: Drug candidates with antiophidic, anticancer and antiparasitic properties. Revista Virtual de Química, 1(1), 58–66. https://doi.org/10.5935/1984-6835.20090008

Gutierrez, S. J. C. (2006). Síntese do bowdenol um dihidrobenzofuranoide isolado de Bowdichia virgilioides e preparação de derivados da riparina isolada de Aniba riparia com potencial atividade biológica. Tese de doutorado. Universidade Federal da Paraiba, João Pessoa, PB, Brasil. http://www.dominiopublico.gov.br/pesquisa/DetalheObraForm.do?select_action=&co_obra=149843

Gutierrez, S. J. C., Claudino, F. de S., Da Silva, B. A., Câmara, C. A., de Almeida, R. N., de Souza, M. de F. V., Da Silva, M. S., Da-Cunha, E. V. L., & Barbosa-Filho, J. M. (2005). Nb-benzoyltryptamine derivatives with relaxant activity in guinea-pig ileum. Il Farmaco, 60(6–7), 475–477. https://doi.org/10.1016/j.farmac.2005.04.001

Hofer, O., Greger, H., Robien, W., & Werner, A. (1986). 13C NMR and 1H lanthanide induced shifts of naturally occurring alkamides with cyclic amide moieties -amides from falcata. Tetrahedron, 42(10), 2707–2716. https://doi.org/10.1016/S0040-4020(01)90557-5

Mafud, A. C., Silva, M. P. N., Nunes, G. B. L., de Oliveira, M. A. R., Batista, L. F., Rubio, T. I., Mengarda, A. C., Lago, E. M., Xavier, R. P., Gutierrez, S. J. C., Pinto, P. L. S., da Silva Filho, A. A., Mascarenhas, Y. P., & de Moraes, J. (2018). Antiparasitic, structural, pharmacokinetic, and toxicological properties of riparin derivatives. Toxicology in Vitro : An International Journal Published in Association with BIBRA, 50, 1–10. https://doi.org/10.1016/j.tiv.2018.02.012

Marques, C. A. (2001). IMPORTÂNCIA ECONÔMICA DA FAMÍLIA LAURACEAE Lindl. FLORAM, 8(núnico), 195–206.

Nascimento, O., Espírito-Santo, R., Opretzka, L., Barbosa-Filho, J., Gutierrez, S., Villarreal, C., & Soares, M. (2016). Pharmacological Properties of Riparin IV in Models of Pain and Inflammation. Molecules, 21(12), 1757. https://doi.org/10.3390/molecules21121757

Newman, D. J., & Cragg, G. M. (2020). Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

Nunes, G. B. L., Costa, L. M., Gutierrez, S. J. C., Satyal, P., & de Freitas, R. M. (2015). Behavioral tests and oxidative stress evaluation in mitochondria isolated from the brain and liver of mice treated with riparin A. Life Sciences, 121, 57–64. https://doi.org/10.1016/j.lfs.2014.11.018

Nunes, G. B. L., Policarpo, P. R., Costa, L. M., da Silva, T. G., Militão, G. C. G., Câmara, C. A., Barbosa Filho, J. M., Gutierrez, S. J. C., Islam, M. T., & de Freitas, R. M. (2014). In vitro antioxidant and cytotoxic activity of some synthetic riparin-derived compounds. Molecules (Basel, Switzerland), 19(4), 4595–4607. https://doi.org/10.3390/molecules19044595

Santiago, R. F., de Brito, T. V., Dias, J. M., Dias, G. J., da Cruz, J. S., Batista, J. A., Silva, R. O., Souza, M. H. L. P., de Albuquerque Ribeiro, R., Gutierrez, S. J. C., Freitas, R. M., Medeiros, J.-V. R., & dos Reis Barbosa, A. L. (2015). Riparin B, a Synthetic Compound Analogue of Riparin, Inhibits the Systemic Inflammatory Response and Oxidative Stress in Mice. Inflammation, 38(6), 2203–2215. https://doi.org/10.1007/s10753-015-0203-4

Silva, R. O., Damasceno, S. R. B., Silva, I. S., Silva, V. G., Brito, C. F. C., Teixeira, A. É. A., Nunes, G. B. L., Camara, C. A., Filho, J. M. B., Gutierrez, S. J. C., Ribeiro, R. A., Souza, M. H. L. P., Barbosa, A. L. R., Freitas, R. M., & Medeiros, J. V. R. (2015). Riparin A, a compound from Aniba riparia, attenuate the inflammatory response by modulation of neutrophil migration. Chemico-Biological Interactions, 229, 55–63. https://doi.org/10.1016/j.cbi.2015.01.029

Torres, J. M., & Chavez, A. G. (2001). Secamidas en plantas: distribuición e importancia. Avance Perspective, 20, 377–387.

Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44–84. https://doi.org/10.1016/j.biocel.2006.07.001

Published

13/12/2021

How to Cite

GOMES, D. M.; ARAUJO, P. M.; SILVA, S. F. da; SANTOS, V. R. dos; GUTIERREZ, S. J. C.; MEIRELLES, L. M. A.; CARVALHO, M. das G. F. de M. . Bioactive potential of riparina synthetic analogs: a systematic review. Research, Society and Development, [S. l.], v. 10, n. 16, p. e328101623510, 2021. DOI: 10.33448/rsd-v10i16.23510. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23510. Acesso em: 19 nov. 2024.

Issue

Section

Review Article