Influence of the installation configuration of heat exchangers on the operation of a heat pump assisted dryer
DOI:
https://doi.org/10.33448/rsd-v10i16.23929Keywords:
Low temperature; Hygroscopic balance; Psychrometrics.Abstract
A prototype of a dryer with a small capacity heat pump was developed and assembled in the laboratory, for drying thermosensitive products, with a refrigeration system coupled to a thermally insulated chamber, fixed to a single structure. Two options for mounting the heat exchange system inside the drying chamber were tested. In the first option (configuration 1), a configuration with a single heat exchanger was used, which alternated the function of evaporator and condenser, in cooling and heating cycles, through the use of a four-way valve. In the second option (configuration 2), a configuration with two heat exchangers was used, where the air passed first through the evaporator and then through the condenser. The settings were evaluated according to the psychrometric operating conditions: temperature, relative humidity and equilibrium air humidity. Configuration 2 was more effective in conditioning the drying air, with more favorable psychrometric conditions, resulting in lower average equilibrium moisture values.
References
Aktas, M., Ceylan, I., Gürel, A. E. (2014). Testing of a Condensation-type Heat Pump System for Low-temperature Drying Applications. International Journal of Food Engineering, 10 (3), 521-531. doi: 10.1515/ijfe-2014-0124.
Alves, G. E., Isquierdo, E. P., Borém, F. M., Siqueira, V. C., Oliveira, P. D.; Anadrade, E. T. (2013). Cinética de secagem de café natural para diferentes temperaturas e baixa umidade relativa. Coffee Science, 8 (2), 238-247.
Borém, F. M., Isquierdo, E. P., Alves, G. E., Ribeiro, D. E., Siqueira, V. C., & Taveira, J. H. D. S. (2018). Quality of natural coffee dried under different temperatures and drying rates. Coffee Science, 13 (2), 159-167. doi: 10.25186/cs.v13i2.1410.
Chung, D.S., Pfost, H.B. (1967). Adsorption and desorption of water vapors by cereal grains and their products Part II. Transactions of the ASAE, 10(1), 549-551.
Closas, A. A., Villanueva, E. P. (2014). An experimental investigation of the fruit drying performance of a heat pump dryer. International Conference on Agriculture, Biology and Environmental Sciences (ICABES'14), 1, 8-9.
Coşkun, S., Doymaz, İ., Tunçkal, C., Erdoğan, S. (2016). Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer. Heat and Mass Transfer, 53(6), 1863–1871. doi:10.1007/s00231-016-1946-7.
Cruz, P. M. F. da, Braga, G. C., Grandi, A. M. de. (2012). Composição química, cor e qualidade sensorial do tomate seco a diferentes temperaturas. Semina: Ciências Agrárias, 33 (4), 1475-1486.
Dong, W., Hu, R., Chu, Z., Zhao, J., Tan, L. (2017). Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Food Chemistry, 234 (1), 121-130.
Dong, W., Hu, R., Long, Y., Li, H., Zhang, Y., Zhu, K., Chu, Z. (2019). Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chemistry, 272 (30), 723-731.
Gümüşay, O. A., Borazan, A. A., Ercal, N., Demirkol, O. (2015). Drying effects on the antioxidante properties of tomatoes and ginger. Food Chemistry, 173 (1), 156-162. doi:10.1016/j.foodchem.2014.09.162.
Hossain, M. A., Gottschalk, K., Hassan, M. S. (2013). Mathematical model for a heat pump dryer for aromatic plant. Procedia Engineering, 56 (1), 510-520.
Jeyaprakash, S., Heffernan, J. E., Driscoll, R. H., & Frank, D. C. (2019). Impact of drying technologies on tomato flavor composition and sensory quality. LWT - Food Science and Technology, 120 (1), 1-11. doi:10.1016/j.lwt.2019.108888.
Jordan, R. A., Cortez, L. A. B., Barbin, D. F., Lucas Junior, J. (2016). Heat pump for thermal power production in dairy farm. Engenharia Agrícola, 36 (5), 779-791.
Jordan, R. A., Yamasaki, J. T., Silveira Jr., V., Castelo Branco, E. D. (2019). Hybrid solar heat pump system for water heating. Engenharia Agrícola 39 (1), 419-425, 2019.
Jordan, R. A., Siqueira, V. C., Quequeto, W. D., Cavalcanti-Mata, M. E. R., Hoscher, R. H., Mabasso, G. A., Battilani, M., Oliveira, F. C., Martins, E. A. S., Freitas, R. L. (2020a). Cinética de secagem de café natural e descascado a baixa temperatura e umidade relativa com emprego de uma bomba de calor. Research, Society and Development, 9(8). doi:10.33448/rsd-v9i8.5528.
Jordan, R. A., Siqueira, V. C., Quequeto, W. D., Cavalcanti-Mata, M. E. R. M., Hoscher, R. H., Mabasso, G. A., Battilani, M., Oliveira, F. C. de, Martins, E. A. S. & Freitas, R. L. (2020b). Consumo específico de energia na secagem de café com sistema de aquecimento resistivo e bomba de calor. Research, Society and Development, 9(9), e303997297. doi: 10.33448/rsd-v9i9.7297
Jordan, R. A., Quequeto, W. D., Martins, E. A. S., Siqueira, V. C., Hoscher, R. H., Vital, R. S., Melo, C. O. M. (2020c). Cinética de secagem de tomate em secador convencional e bomba de calor. Research, Society and Development, 9(9), e810998024, doi: 10.33448/rsd-v9i9.8024.
Jordan, R. A., Siqueira, V. C., Cavalcanti-Mata, M. E. R. M., Hoscher, R. H., Mabasso, G. A., Quequeto, W. D., Battilani, M., Freitas, R. L., Oliveira, F. C., Martins, E. A. S. (2020d). Qualidade sensorial do café submetido a secagem a baixa temperatura e a frio com emprego de um sistema baseado em tecnologia de bomba de calor. Research, Society and Development, 9(11), e59791110302, doi: 10.33448/rsd-v9i11.10302.
Kulapichitr, F., Borompichaichartkul, C., Suppavorasatit, I., Cadwallader, K. R. (2019). Impact of drying process on chemical composition and key aroma components of Arabica coffee. Food Chemistry, 291(1), 49-58.
Patel, K. K., Kar, A. (2012). Heat pump assisted drying of agricultural produce - an overview. Journal of Food Sciencie Technology, 49 (2):142–160, doi: 10.1007/s13197-011-0334-z.
Ponwapee, P., Somsila, P., Teeboonma, U., Namkhat, A., Pumchumpol, S. (2021). Thermal performance of heat pump dryer using R32 as refrigerant. Materials Science and Engineering. 1137(1), 1-11. doi: 10.1088/1757-899X/1137/1/012003
Lee, K.H., Kim, O.J., Kim, J. (2010). Performance simulation of a two-cycle heat pump dryer for high temperature drying. Drying Technology, 28 (1), 683-689.
Lenth, R.V. (2021). Emmeans: Estimated Marginal Means, akaLeast-Squares Means. R packageversion 1.6.3. Disponível em: https://CRAN.R-project.org/package=emmeans
Lewis, D. (2003). High temperature dehumidification systems, US Patent 20030208923.
Mellmann, J., & Fürll, C. (2008). Drying facilities for medicinal and aromatic plants-specific energy consumption and potential for optimisation. Zeitschrift fur Arznei-& Gewurzpflanzen, 13(3), 127-133.
Minea, V. (2011). Industrial drying heat pumps in refrigeration: Theory, technology and applications. Nova Science Publishers: Hauppauge, NY, 1–70.
Minea, V. (2015). Overview of heat-pump–assisted drying systems, part I: integration, control complexity, and applicability of new innovative concepts, Drying Technology, 1, 1-12. doi: 10.1080/07373937.2014.952377.
Pal, U. S., Khan, M.K. (2010). Performance evaluation of heat pump dryer. Journal of Food Science Technology, 47 (2), 230-234.
R Development Core Team. R: Language and Environment for Statistical Computing.R Foundation for Statistical Computing, 2014. http://www.R-project.org
Sarkar, J., Bhattacharyya, S., Gopal, R. (2006). Transcritical CO2 Heat Pump Dryer: Part 2. Validation and Simulation Results. Drying Technology, 24 (1), 1593-1600, , doi: 10.1080/07373930601030945.
Strømmen, I., Eikevik, T.M., Alves-Filho, O., Syverud, K., Jonassen, O. (2003). “Low temperature Drying with Heat Pumps – New Generations of High Quality Dried products”. The 2nd Nordic Drying Conference, Copenhagen Denmark.
Taşeri, L., Aktas, M., Şevik, S., Gülcü, M., Seҫin, G. U., Aktekeli, B. (2018). Determination of drying kinetics and quality parameters of grape pomace dried with a heat pump dryer. Food Chemistry, 260 (15), 152-159.
Teeboonma, U., Tiansuwan, J., Soponronnarit, S. (2003). Optimization of heat pump fruit dryers. Journal of Food Engineering, 59(4), 369-377. doi: 10.1016/S0260-8774(02)00496-X.
Yuan, Y., Lin, W., Mao, X., Li, W., Yang, L., Wei, J., Xiao, B. (2019). Performance analysis of heat pump dryer with unit-room in cold climate regions. Energies, 12(1), 3125. doi:10.3390/en12163125.
Ziegler, T., Jubaer, H., & Mellmann, J. (2013). Simulation of a heat pump dryer for medicinal plants. Chemie Ingenieur Technik, 85(3), 353–363. doi: 10.1002/cite.201200123
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Rodrigo Aparecido Jordan; Wellytton Darci Quequeto; Anamari Viegas de Araujo Motomia; Valdiney Cambuy Siqueira; Elton Aparecido Siqueira Martins; Ítalo Sabião Sanches; Édipo Sabião Sanches; Bruno Machado Antunes
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.