Influence of the installation configuration of heat exchangers on the operation of a heat pump assisted dryer

Authors

DOI:

https://doi.org/10.33448/rsd-v10i16.23929

Keywords:

Low temperature; Hygroscopic balance; Psychrometrics.

Abstract

A prototype of a dryer with a small capacity heat pump was developed and assembled in the laboratory, for drying thermosensitive products, with a refrigeration system coupled to a thermally insulated chamber, fixed to a single structure. Two options for mounting the heat exchange system inside the drying chamber were tested. In the first option (configuration 1), a configuration with a single heat exchanger was used, which alternated the function of evaporator and condenser, in cooling and heating cycles, through the use of a four-way valve. In the second option (configuration 2), a configuration with two heat exchangers was used, where the air passed first through the evaporator and then through the condenser. The settings were evaluated according to the psychrometric operating conditions: temperature, relative humidity and equilibrium air humidity. Configuration 2 was more effective in conditioning the drying air, with more favorable psychrometric conditions, resulting in lower average equilibrium moisture values.

References

Aktas, M., Ceylan, I., Gürel, A. E. (2014). Testing of a Condensation-type Heat Pump System for Low-temperature Drying Applications. International Journal of Food Engineering, 10 (3), 521-531. doi: 10.1515/ijfe-2014-0124.

Alves, G. E., Isquierdo, E. P., Borém, F. M., Siqueira, V. C., Oliveira, P. D.; Anadrade, E. T. (2013). Cinética de secagem de café natural para diferentes temperaturas e baixa umidade relativa. Coffee Science, 8 (2), 238-247.

Borém, F. M., Isquierdo, E. P., Alves, G. E., Ribeiro, D. E., Siqueira, V. C., & Taveira, J. H. D. S. (2018). Quality of natural coffee dried under different temperatures and drying rates. Coffee Science, 13 (2), 159-167. doi: 10.25186/cs.v13i2.1410.

Chung, D.S., Pfost, H.B. (1967). Adsorption and desorption of water vapors by cereal grains and their products Part II. Transactions of the ASAE, 10(1), 549-551.

Closas, A. A., Villanueva, E. P. (2014). An experimental investigation of the fruit drying performance of a heat pump dryer. International Conference on Agriculture, Biology and Environmental Sciences (ICABES'14), 1, 8-9.

Coşkun, S., Doymaz, İ., Tunçkal, C., Erdoğan, S. (2016). Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer. Heat and Mass Transfer, 53(6), 1863–1871. doi:10.1007/s00231-016-1946-7.

Cruz, P. M. F. da, Braga, G. C., Grandi, A. M. de. (2012). Composição química, cor e qualidade sensorial do tomate seco a diferentes temperaturas. Semina: Ciências Agrárias, 33 (4), 1475-1486.

Dong, W., Hu, R., Chu, Z., Zhao, J., Tan, L. (2017). Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Food Chemistry, 234 (1), 121-130.

Dong, W., Hu, R., Long, Y., Li, H., Zhang, Y., Zhu, K., Chu, Z. (2019). Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chemistry, 272 (30), 723-731.

Gümüşay, O. A., Borazan, A. A., Ercal, N., Demirkol, O. (2015). Drying effects on the antioxidante properties of tomatoes and ginger. Food Chemistry, 173 (1), 156-162. doi:10.1016/j.foodchem.2014.09.162.

Hossain, M. A., Gottschalk, K., Hassan, M. S. (2013). Mathematical model for a heat pump dryer for aromatic plant. Procedia Engineering, 56 (1), 510-520.

Jeyaprakash, S., Heffernan, J. E., Driscoll, R. H., & Frank, D. C. (2019). Impact of drying technologies on tomato flavor composition and sensory quality. LWT - Food Science and Technology, 120 (1), 1-11. doi:10.1016/j.lwt.2019.108888.

Jordan, R. A., Cortez, L. A. B., Barbin, D. F., Lucas Junior, J. (2016). Heat pump for thermal power production in dairy farm. Engenharia Agrícola, 36 (5), 779-791.

Jordan, R. A., Yamasaki, J. T., Silveira Jr., V., Castelo Branco, E. D. (2019). Hybrid solar heat pump system for water heating. Engenharia Agrícola 39 (1), 419-425, 2019.

Jordan, R. A., Siqueira, V. C., Quequeto, W. D., Cavalcanti-Mata, M. E. R., Hoscher, R. H., Mabasso, G. A., Battilani, M., Oliveira, F. C., Martins, E. A. S., Freitas, R. L. (2020a). Cinética de secagem de café natural e descascado a baixa temperatura e umidade relativa com emprego de uma bomba de calor. Research, Society and Development, 9(8). doi:10.33448/rsd-v9i8.5528.

Jordan, R. A., Siqueira, V. C., Quequeto, W. D., Cavalcanti-Mata, M. E. R. M., Hoscher, R. H., Mabasso, G. A., Battilani, M., Oliveira, F. C. de, Martins, E. A. S. & Freitas, R. L. (2020b). Consumo específico de energia na secagem de café com sistema de aquecimento resistivo e bomba de calor. Research, Society and Development, 9(9), e303997297. doi: 10.33448/rsd-v9i9.7297

Jordan, R. A., Quequeto, W. D., Martins, E. A. S., Siqueira, V. C., Hoscher, R. H., Vital, R. S., Melo, C. O. M. (2020c). Cinética de secagem de tomate em secador convencional e bomba de calor. Research, Society and Development, 9(9), e810998024, doi: 10.33448/rsd-v9i9.8024.

Jordan, R. A., Siqueira, V. C., Cavalcanti-Mata, M. E. R. M., Hoscher, R. H., Mabasso, G. A., Quequeto, W. D., Battilani, M., Freitas, R. L., Oliveira, F. C., Martins, E. A. S. (2020d). Qualidade sensorial do café submetido a secagem a baixa temperatura e a frio com emprego de um sistema baseado em tecnologia de bomba de calor. Research, Society and Development, 9(11), e59791110302, doi: 10.33448/rsd-v9i11.10302.

Kulapichitr, F., Borompichaichartkul, C., Suppavorasatit, I., Cadwallader, K. R. (2019). Impact of drying process on chemical composition and key aroma components of Arabica coffee. Food Chemistry, 291(1), 49-58.

Patel, K. K., Kar, A. (2012). Heat pump assisted drying of agricultural produce - an overview. Journal of Food Sciencie Technology, 49 (2):142–160, doi: 10.1007/s13197-011-0334-z.

Ponwapee, P., Somsila, P., Teeboonma, U., Namkhat, A., Pumchumpol, S. (2021). Thermal performance of heat pump dryer using R32 as refrigerant. Materials Science and Engineering. 1137(1), 1-11. doi: 10.1088/1757-899X/1137/1/012003

Lee, K.H., Kim, O.J., Kim, J. (2010). Performance simulation of a two-cycle heat pump dryer for high temperature drying. Drying Technology, 28 (1), 683-689.

Lenth, R.V. (2021). Emmeans: Estimated Marginal Means, akaLeast-Squares Means. R packageversion 1.6.3. Disponível em: https://CRAN.R-project.org/package=emmeans

Lewis, D. (2003). High temperature dehumidification systems, US Patent 20030208923.

Mellmann, J., & Fürll, C. (2008). Drying facilities for medicinal and aromatic plants-specific energy consumption and potential for optimisation. Zeitschrift fur Arznei-& Gewurzpflanzen, 13(3), 127-133.

Minea, V. (2011). Industrial drying heat pumps in refrigeration: Theory, technology and applications. Nova Science Publishers: Hauppauge, NY, 1–70.

Minea, V. (2015). Overview of heat-pump–assisted drying systems, part I: integration, control complexity, and applicability of new innovative concepts, Drying Technology, 1, 1-12. doi: 10.1080/07373937.2014.952377.

Pal, U. S., Khan, M.K. (2010). Performance evaluation of heat pump dryer. Journal of Food Science Technology, 47 (2), 230-234.

R Development Core Team. R: Language and Environment for Statistical Computing.R Foundation for Statistical Computing, 2014. http://www.R-project.org

Sarkar, J., Bhattacharyya, S., Gopal, R. (2006). Transcritical CO2 Heat Pump Dryer: Part 2. Validation and Simulation Results. Drying Technology, 24 (1), 1593-1600, , doi: 10.1080/07373930601030945.

Strømmen, I., Eikevik, T.M., Alves-Filho, O., Syverud, K., Jonassen, O. (2003). “Low temperature Drying with Heat Pumps – New Generations of High Quality Dried products”. The 2nd Nordic Drying Conference, Copenhagen Denmark.

Taşeri, L., Aktas, M., Şevik, S., Gülcü, M., Seҫin, G. U., Aktekeli, B. (2018). Determination of drying kinetics and quality parameters of grape pomace dried with a heat pump dryer. Food Chemistry, 260 (15), 152-159.

Teeboonma, U., Tiansuwan, J., Soponronnarit, S. (2003). Optimization of heat pump fruit dryers. Journal of Food Engineering, 59(4), 369-377. doi: 10.1016/S0260-8774(02)00496-X.

Yuan, Y., Lin, W., Mao, X., Li, W., Yang, L., Wei, J., Xiao, B. (2019). Performance analysis of heat pump dryer with unit-room in cold climate regions. Energies, 12(1), 3125. doi:10.3390/en12163125.

Ziegler, T., Jubaer, H., & Mellmann, J. (2013). Simulation of a heat pump dryer for medicinal plants. Chemie Ingenieur Technik, 85(3), 353–363. doi: 10.1002/cite.201200123

Published

14/12/2021

How to Cite

JORDAN, R. A.; QUEQUETO, W. D.; MOTOMIA, A. V. de A. .; SIQUEIRA, V. C.; MARTINS, E. A. S. .; SANCHES, Ítalo S. .; SANCHES, Édipo S. .; ANTUNES, B. M. . Influence of the installation configuration of heat exchangers on the operation of a heat pump assisted dryer. Research, Society and Development, [S. l.], v. 10, n. 16, p. e378101623929, 2021. DOI: 10.33448/rsd-v10i16.23929. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23929. Acesso em: 18 apr. 2024.

Issue

Section

Agrarian and Biological Sciences