Antimicrobial activity of the extract, fractions and punicalagin from the rind of the fruit of Punica granatum against clinical isolates from cows with mastitis

Authors

DOI:

https://doi.org/10.33448/rsd-v10i16.23935

Keywords:

Pomegranate; Granada varieties; Wonderful varieties; Minimum Inhibitory Concentration (MIC); High Performance Liquid Chromatography (HPLC).

Abstract

The aim of this study was to evaluate the antimicrobial activity of the extract, fractions and purified punicalagin from peel pomegranate fruit of the granada and wonderful varieties against Coagulase Positive Staphylococcus (CPS) and Coagulase- negative Staphylococcus (CNS), isolated from cows with mastitis. The pomegranate pods were dried in an oven, ground and the ethanol extract was prepared by maceration and percolation. The fractions were obtained by liquid-liquid fractionation, and the purification of punicalagin was carried out in a chromatographic column filled with Diaion® HP-20. HPLC and NMR (1H and 13C -Acetone-d6) were used for identification, quantification and structural elucidation of punicalagin and MIC (CLSI-M7A10) were determined for 23 clinical isolates. The punicalagin content was higher in the extract and fractions of the granada variety, reaching 81.5% in the purified punicalagin sample, which showed good antimicrobial activity against clinical isolates, with emphasis on S. aureus and S. schleiferi schleiferi, where the MIC was 31.75 µg/ml. Thus. punicalagin was defined as an important metabolite for the antimicrobial potential of P. granatum fruits, however, the synergism of metabolites of ethyl acetate fractions and aqueous fraction of the granada variety, had considerable importance for the good antimicrobial activity of these fractions, compared to 100 % of the CPS and CNS. Thus, the results obtained confirm the antimicrobial activity of the metabolites present in the pomegranate peel, which may support new research on pharmaceutical formulations based on P. granatum, as an alternative for the treatment, prevention and control of mastitis.

References

Alves, D. N., Ferreira, A. R., Duarte, A. B. S., Melo, A. K. V., Sousa, D. P. & Castro, R. D. (2021). Breakpoints for the Classification of Anti-Candida Compounds in Antifungal Screening. BioMed Research International, 2021. https://doi.org/10.1155/2021/6653311.

API. (2004). The Ayurvedic Pharmacopoeia of India. (Part I, Volume IV). India. Department of Indian Systems of Medicine and Homoeopathy, Ministry of Health and Family Welfare. http://www.ayurveda.hu/api/API-Vol-4.pdf.

Bassari-Jahromi, S. & Doostkam, A. (2019). Comparative evaluation of bioactive compounds of various cultivars of pomegranate (Punica granatum) in different world regions. Agriculture and Food, 4(1), 41-55. https://doi.org 10.3934/agrfood.2019.1.41.

Borgo, J., Xavier, C. A. G., Moura, D. J., Richter, M. F. & Suyenaga, E. S. (2010). Influência dos processos de secagem sobre o teor de flavonoides e na atividade antioxidante dos extratos de Baccharis articulata (Lam.) Pers., Asteraceae. Brazilian Journal of Pharmacognosy, 20(1), 12-17. https://doi.org/10.1590/S0102-695X2010000100004.

Carneiro, C. C., Santos, S. C., de Souza, L. R. Jr., Bara, M. T. F., Chaibub, B. A., de Melo Reis, P. R., Chaves, D. A., da Silva, A. J. R., Silva, L. S., de Melo e Silva, D. & Chen-Chen, L. (2016). Chemopreventive effect and angiogenic activity of punicalagin isolated from leaves of Lafoensia pacari A. St.-Hil. Toxicology and Applied Pharmacology, 310, 1-8. 10.1016/j.taap.2016.08.015.

Casanova, L. M. & Costa, S. S. (2017). Interações sinérgicas em produtos naturais: potencial terapêutico e desafios. Revista Virtual de Química, 9(2), 575-595. Retrieved from http://static.sites.sbq.org.br/rvq.sbq.org.br/pdf/v9n2a09.pdf.

Cechinel Filho, V. & Yunes, R. A. (1998). Estratégias para a obtenção de compostos farmacologicamente ativos a partir de plantas medicinais. conceitos sobre modificação estrutural para otimização da atividade. Química Nova, 21(1). https://doi.org/10.1590/S0100-40421998000100015.

Chaibub, B. A., Parente, L. M. L., Lino Jr, R. S., Cirilo, H. N. C., Garcia, S. A. S., Nogueira, J. C. M., Conceição, E. C., Thomaz, D. V., Santos, S. C. & Bara, M. T. F. (2020). Pharmacognosy Investigation of wound healing activity of Lafoensia pacari (Lythraceae) leaves extract cultivated in Goiás state, Brazil. Rodriguesia, 71. https://doi.org/10.1590/2175-7860202071058.

Chen, J., Liao, C., Ouyang, X., Kahramanoglu, I., Gan, Y. & Li, M. (2020). Antimicrobial Activity of Pomegranate Peel and Its Applications on Food Preservation. Journal of Food Quality, 2020. https://doi.org/10.1155/2020/8850339.

Choi, J. G., Kang, O. H., Lee, Y. S., Chae, H. S., Oh, Y. C., Brice, O. O., Kim, M. S., Sohn, D. H., Kim, H. S., Park, H., Shin, D. W., Rho, J. R. & Kwon, D. Y. (2011). In Vitro and In Vivo Antibacterial Activity of Punica granatum Peel Ethanol Extract against Salmonella. Evidence-Based Complementary and Alternative Medicine, 2011. 10.1093/ecam/nep105.

CLSI. (2018). Methodos for Dilution Antimicrobial Susceptibility Testes for Bacteria That Grow Aerobically. (11th ed.) CLSI standard M07. Wayne, PA: Clinical and Laboratory Standard Institute.

Demir, T. (2021). Effects of Green Tea Powder, Pomegranate Peel Powder, Epicatechin and Punicalagin Additives on Antimicrobial, Antioxidant Potential and Quality Properties of Raw Meatballs. Molecules, 26(13), 4052. https://doi.org/10.3390/molecules26134052.

Di Stefano, V., Pitonzo, R., Novara, M. E., Bongiorno, D., Indelicato, S., Gentile, C., Avellone, G., Bognanni, R., Scandurra, S. & Melilli, M. G. (2019). Antioxidant activity and phenolic composition in pomegranate (Punica granatum L.) genotypes from south Italy by UHPLC–Orbitrap-MS approach. Journal of the Sciente of Food and Agriculture, 99(3), 1038-1045. https://doi.org/10.1002/jsfa.9270.

Fawole, O. A., Makunga, N. P. & Opara, U. L. (2012). Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract. BMC Complementary & Alternative Medicine, 12 (1), 200. 10.1186/1472-6882-12-200.

Fernandes, D. A., Barros, R. P. C., Teles, Y. C. F., Oliveira, L. H. G., Lima, J. B., Scotti, M. T., Nunes, F. C., Conceição, A. S. & Souza, M. F. V. (2019). Larvicidal Compounds Extracted from Helicteres velutina K. Schum (Sterculiaceae) Evaluated against Aedes aegypti L. Molecules, 24(12), 2315. https://doi.org/10.3390/molecules24122315.

Fourati, M., Smaoui, S., Ennouri, K., Hlima, H. B., Elhadef, K., Chakchouk-Mtibaa, A., Sellem, I. & Mellouli, L. (2019). Multiresponse Optimization of Pomegranate Peel Extraction by Statistical versus Artificial Intelligence: Predictive Approach for Foodborne Bacterial Pathogen Inactivation. Evidence-Based Complementary and Alternative Medicine, 2019. https://doi.org/10.1155/2019/1542615.

Ge, S., Duo, L., Wang, J., Zhula, G., Yang, J., Li, Z. & Tu, Y. (2021). A unique understanding of traditional medicine of pomegranate, Punica granatum L. and its current research status. Journal of Ethnopharmacology, 271. https://doi.org/10.1016/j.jep.2021.113877.

Gobbo-Neto, L. & Lopes, N. P. (2007). Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Quimica Nova, 30(2), 374-381. https://doi.org/10.1590/S0100-40422007000200026.

Gosset-Erard, C., Zhao, M., Lordel-Madeleine, S. & Ennahar, S. (2021). Identification of punicalagin as the bioactive compound behind the antimicrobial activity of pomegranate (Punica granatum L.) peels. Food Chemistry, 352. https://doi.org/10.1016/j.foodchem.2021.129396.

Hernandez-Corroto, E., Marina, M. L. & Garcia, M. C. (2019). Extraction and identification by high resolution mass spectrometry ofbioactive substances in different extracts obtained frompomegranate peel. Journal of Chromatography A, 1594, 82-92. https://doi.org/10.1016/j.chroma.2019.02.018.

Indurkar, S. J. & Rathod, V. K. (2018). Aqueous two-phase extraction of punicalagin (α+β) from pomegranate peel by response surface methodology. Separation Science and Technology, 54(1), 51-58. https://doi.org/10.1080/01496395.2018.1488866.

Kabelitz, T., Aubry, E., Vorst, K. V., Amon, T. & Fulde, M. (2021). The Role of Streptococcus spp. in Bovine Mastitis. Microorganism, 9(7), 1497. https://doi.org/10.3390/microorganisms9071497.

Kharchoufi, S., Licciardello, F., Siracusa, L., Muratore, G., Hamdi, M. & Restuccia, C. (2018). Antimicrobial and antioxidant features of ‘Gabsiʼ pomegranate peel extracts. Industrial Crops & Products, 111, 345-352. https://doi.org/10.1016/j.indcrop.2017.10.037.

Ko, K., Dadmohammadi, Y. & Abbaspourrad, A. (2021). Nutritional and Bioactive Components of Pomegranate Waste Used in Food and Cosmetic Applications: A Review. Foods, 10(3), 657. https://doi.org/10.3390/foods10030657.

Kraszni, M., Marosi, A. & Larive, C. K. (2013). NMR assignments and the acid–base characterization of the pomegranate ellagitannin punicalagin in the acidic pH-range. Analytical and Bioanalytical Chemistry, 405(17), 5807-5816. https://doi.org/10.1007/s00216-013-6987-x.

Loures, P. K. R. (2013). Desenvolvimento tecnológico de extratos vegetais padronizados a partir das cascas dos frutos de Punica granatum L. (lythraceae). (Dissertação de Mestrado, Programa de Pós-graduação em Ciências Farmacêuticas) Universidade Federal de Goiás, Faculdade de Farmácia, Goiânia, Goiás.

Mahdavi, A. M., Seyedsadjadi, N. & Javadivala, Z. (2021). Potential effects of pomegranate (Punica granatum) on rheumatoid arthritis: A systematic review. The International Journal of Clinical Practice, 75(8). https://doi.org/10.1111/ijcp.13999.

Melgarejo-Sanchez, P., Nunez-Gomez, D., Martinez-Nicolas, J. J., Hernandez, F., Legua, P. & Melgarejo, P. (2021). Pomegranate variety and pomegranate plant part, relevance from bioactive point of view: a review. Bioresources and Bioprocessing, 8(2). https://doi.org/10.1186/s40643-020-00351-5.

Moga, M. A., Dimienescu, O. G., Balan, A., Dima, L., Toma, S. I., Bigiu, N. F. & Blidaru, A. (2021). Pharmacological and Therapeutic Properties of Punica granatum Phytochemicals: Possible Roles in Breast Cancer. Molecules, 26(4). https://doi.org/10.3390/molecules26041054.

Nascimento, P. F. C., Nascimento, A. C., Rodrigues, C. S., Antoniolli, A. R., Santos, P. O., Barbosa Junior, A. M. & Trindade, R. C. (2007). Atividade antimicrobiana dos óleos essenciais: uma abordagem multifatorial dos métodos. Brazilian Journal of Pharmacognosy, 17(1), 108-113. https://doi.org/10.1590/S0102-695X2007000100020.

Naviglio, D., Scarano, P., Ciaravolo, M. & Gallo, M. (2019). Rapid Solid-Liquid Dynamic Extraction (RSLDE): A Powerful and Greener Alternative to the Latest Solid-Liquid Extraction Techniques. Foods, 8(7), 245. 10.3390/foods8070245.

Oudane, B., Boudemagh, D., Bounekhel, M., Sobhi, W., Vidal, M. & Broussy, S. (2018). Isolation, characterization, antioxidant activity, and proteinprecipitating capacity of the hydrolyzable tannin punicalagin from pomegranate yellow peel (Punica granatum). Journal of Molecular Structure, 1156, 390-396. https://doi.org/10.1016/j.molstruc.2017.11.129.

Pedersen, R. R., Kromker, V., Bjarnsholt, T., Pedersen, K. D., Buhl, R. & Jorgensen, E. (2021). Biofilm Research in Bovine Mastitis. Frontiers in Pharmacology, 8, 656810. 10.3389/fvets.2021.656810.

Rezende, W. P., Borges, L. L., Santos, D. L., Alves, N. M. & Paula, J. R. (2015). Effect of Environmental Factors on Phenolic Compounds in Leaves of Syzygium jambos (L.) Alston (Myrtaceae). Modern Chemistry & Applications, 3(2). 10.4172/2329-6798.1000157.

Rongai, D., Pulcini, P., Di Lernia, G., Nota, P., Preka, P. & Milano, F. (2019). Punicalagin Content and Antifungal Activity of Different Pomegranate (Punica ganatum L.) Genotypes. Horticulturae, 5(52). https://doi.org/10.3390/horticulturae5030052.

Sa, S., Chaul, L. T., Alves, V. F., Fiuza, T. S., Tresvenzol, L. M. F., Vaz, B. G., Ferri, P. H., Borges, L. L. & Paul, J. R. (2018). Phytochemistry and antimicrobial activity of Campomanesia adamantium. Brazilian Journal of Pharmacognosy, 28(3), 303-311. https://doi.org/10.1016/j.bjp.2018.02.008.

Santos, A. C. M., oliveira, V. C., Macedo, A. P., Bastos, J. K., Ogasawara, M. S., Watanabe, E., Chaguri, I. M., Silva-Lovato, C. H. & Paranhos, H. F. O. (2019). Effectiveness of Oil-Based Denture Dentifrices-Organoleptic Characteristics, Physicochemical Properties and Antimicrobial Action. Antibiotics, 10(7), 813. https://doi.org/10.3390/antibiotics10070813.

Sateriale, D., Facchiano, S., Colicchio, R., Pagliuca, C., Varricchio, E., Paolucci, M., Volpe, M. G., Salvatore, P. & Pagliarulo, C. (2020). In vitro Synergy of Polyphenolic Extracts From Honey, Myrtle and Pomegranate Against Oral Pathogens, S. mutans and R. dentocariosa. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01465.

Scorzoni, L., Sangalli-Leite, F., Singulani, J. L., Silva, A. C. A. P., Costa-Orlandi, C. B., Fusco-Almeida, A. M. & Mendes-Giannini, M. J. M. (2016). Searching new antifungals: The use of in vitro and in vivo methods for evaluation of natural compounds. Journal of Microbiological Methods, 123, 68-78. https://doi.org/10.1016/j.mimet.2016.02.005.

Shaikh, S. B. & Bhandary, Y. P. (2021). Therapeutic properties of Punica granatum L (pomegranate) and its applications in lung-based diseases: A detailed review. Jounal of Food Biochemistry, 45(4). https://doi.org/10.1111/jfbc.13684.

Sharun, K., Dhama, K., Tiwari, R., Gugjoo, M. B., Yatoo, M. I., Patel, S. K., Pathak, M., Karthik, K., Khurana, S. K., Singh, R., Puvvala, B., Amarpal., Singh, R., Singh, K. P. & Chaicumpa, W. (2021). Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Veterinary Quarterly, 41(1), 107-136. https://doi.org/10.1080/01652176.2021.1882713.

Shui, Y., Li, J., Lyu, X. & Wang, Y. (2021). Phytotherapy in the management of denture stomatitis: A systematic review and meta-analysis of randomized controlled trials. Phytotherapy Research, 35(8). https://doi.org/10.1002/ptr.7073.

Silva, A. C., Laven, R. & Benite, N. R. (2021). Risk Factors AssociatedWith Mastitis in Smallholder Dairy Farms in Southeast Brazil. Animals, 11(7), 2089. https://doi.org/10.3390/ani11072089.

Singh, B., Singh, J. P., Kaur, A. & Singh, N. (2019). Antimicrobial potential of pomegranate peel: a review. International Journal of Food Science and Technology, 54(4), 959-965. https://doi.org/10.1111/ijfs.13964.

Sridhar, A., Ponnuchamy, M., Kumar, P. S., Kapoor, A., Vo, D. V. N. & Prabhakar, S. (2021). Techniques and modeling of polyphenol extraction from food: a review. Environmental Chemistry Letters, 19, 3409-3443. https://doi.org/10.1007/s10311-021-01217-8.

Skenderidis, P., Mitsagga, C., Giavasis, I., Petrotos, K., Lampakis, D., Leontopoulos, S., Hadjichristodoulou, C. & Tsakalof, A. (2019). The in vitro antimicrobial activity assessment of ultrasound assisted Lycium barbarum fruit extracts and pomegranate fruit peels. Journal of Food Measurement and Characterization volume, 13, 2017-2031. https://doi.org/10.1007/s11694-019-00123-6.

Sun, G., Abuduaini, M., Adili, G., Zhao, Y. & Aisa, H. A. (2021). Dual-tautomerism separation method based on asymmetric transformation: Gram-scale preparation of high-purity punicalagin from pomegranate peel wastes. Journal of Chromatography A, 1651. https://doi.org/10.1016/j.chroma.2021.462281.

Tadi, M., Boroujeni, H. M., Rafieian-Kopaei, M. & Sadrabad, E. K. (2020). Inhibitory effects of ethanolic extract of two Iranian pomegranates peel cultivars on Staphylococcus aureus and Salmonella typhimurium. Asian Journal of Agriculture and Biology, 8(3), 341-347.

Tan, R., Yu, A., Liu, Z., Liu, Z., Jiang, R., Wang, X., Liu, J., Gao, J. & Wang, X. (2021). Prediction of Minimal Inhibitory Concentration of Meropenem Against Klebsiella pneumoniae Using Metagenomic Data. Frontiers in Microbiology, 12. 10.3389/fmicb.2021.712886.

Tozzi, F., Nunez-Gomez, D., Legua, P., Del Bubba, M., Giordani, E. & Melgarejo, P. (2022). Qualitative and varietal characterization of pomegranate peel: High-value co-product or waste of production? Scientia Horticulturae, 291. https://doi.org/10.1016/j.scienta.2021.110601.

Veloso, F. S., Caleja, C., Calhelha, R. C., Pires, T. C. S., Alves, M. J., Barros, L., Genena, A. k., Barreira, J. C. M. & Ferreira, I. C. E. R. (2020). Characterization and Application of Pomegranate Epicarp Extracts as Functional Ingredients in a Typical Brazilian Pastry Product. Molecules, 25(7), 1481. https://doi.org/10.3390/molecules25071481.

Venusova, E., Kolesarova, A., Horky, P. & Slama, P. (2021). Physiological and Immune Functions of Punicalagin. Nutrients, 13(7), 2150. https://doi.org/10.3390/nu13072150.

Wang, D., Ozen, C., Abu-Reidah, I. M., Chigurupati, S., Patra, J. K., Horbanczuk, J. O., Józwik, A., Tzvetkov, N. T., Uhrin, P. & Atanasov, A. G. (2018). Vasculoprotective Effects of Pomegranate (Punica granatum L.). Frontiers in Pharmacology, 9(544). https://doi.org/10.3389/fphar.2018.00544.

Wang, S. T., Feng, Y. J., Lai, Y. J. & Su, N. w. (2019). Complex Tannins Isolated from Jelly Fig Achenes Affect Pectin Gelation through Non-Specific Inhibitory Effect on Pectin Methylesterase. Molecules, 24(8), 1601. https://doi.org/10.3390/molecules24081601.

Wang, N., Zhou, C., Basang, W., Zhu, Y., Wang, X., Li, C., Chen, L. & Zhou, X. (2021). Mechanisms by which mastitis affects reproduction in dairy cow: A review. Reproduction in Domestic Animals, 56(9), 1165-1175. https://doi.org/10.1111/rda.13953.

Zigo, F., Vasil, M., Ondrasovicova, S., Vyrostkova, J., Bujok, J. & Pecka-Kielb, E. (2021). Maintaining Optimal Mammary Gland Health and Prevention of Mastitis. Frontiers in Veterinary Science, 8. 10.3389/fvets.2021.607311.

Published

18/12/2021

How to Cite

CAMPOS, E. Ítalo A.; SILVA, L. de S. .; GARCIA, S. A. de S.; OLIVEIRA , P. G. de; OLIVEIRA , M. A. P. de; SILVA, C. A. da; PAULA, J. R. de. Antimicrobial activity of the extract, fractions and punicalagin from the rind of the fruit of Punica granatum against clinical isolates from cows with mastitis. Research, Society and Development, [S. l.], v. 10, n. 16, p. e531101623935, 2021. DOI: 10.33448/rsd-v10i16.23935. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23935. Acesso em: 12 dec. 2024.

Issue

Section

Health Sciences