Relationship between muscle mass and neuromuscular function in the muscular strength of elderly women practicing and non-practicing physical activities




Elderly; Muscle mass; Neuromuscular function; Muscle strength; Physical exercise.


Objective. To verify the correlation between muscle mass and neuromuscular function in muscle strength of women practicing and not practicing physical activities. Methods. This is a cross-sectional study conducted with older women (60 and over), physically active (fa) and physically inactive (fi). The muscle strength of the upper limb (handgrip strength - hgs; resisfor test) and lower limb (30 second chair stand test) were evaluated; as well as muscle mass (calf circumference - cc); and neuromuscular activity (semg) of the following muscles: flexor carpi radialis (fcr) and biceps brachii (bb) (upper limb); vastus lateralis (vl), vastus medialis (vm) and tibialis anterior (ta) (lower limb). The student t test and multiple linear regression were used (95%; p <.05). Results. Overall, 59 women were evaluated (71.5 ± 7.1 years), 31 fa and 28 fi. Fa women had significantly better values ​​in dynamic muscular strength tests of the upper (p=.001) and lower limbs (p<.0001). There was no significant difference in muscle mass between groups. After adjustment for covariates, there was relationship between cc and activity of fcr muscle with hgs (r2adj.= 0.64), and cc with the 30 second chair stand test (r2adj.= .39) in fa women. Among fi women, there was significant correlation between activity of fcr muscle and hgs (r2adj.= .35) and cc and neural activity of fcr with resisfor (r2adj.= .66). Conclusion. Physical exercise was related to higher dynamic muscle strength. Differences in the relationship between muscle mass and neuromuscular activity with strength in each test indicate physiological differences for each strength exercise applied.


Associação Brasileira de Empresas e Pesquisas. (2020). Critério Brasil - ABEP. Associação Brasileira de Empresas e Pesquisas Website.

Arnold, P., & Bautmans, I. (2014). The influence of strength training on muscle activation in elderly persons: a systematic review and meta-analysis. Experimental gerontology, 58, 58–68.

Angulo, J., El Assar, M., Álvarez-Bustos, A., & Rodríguez-Mañas, L. (2020). Physical activity and exercise: Strategies to manage frailty. Redox biology, 35, 101513.

Bann, D., Hire, D., Manini, T., Cooper, R., Botoseneanu, A., McDermott, M. M., Pahor, M., Glynn, N. W., Fielding, R., King, A. C., Church, T., Ambrosius, W. T., Gill, T. M., & LIFE Study Group (2015). Light Intensity physical activity and sedentary behavior in relation to body mass index and grip strength in older adults: cross-sectional findings from the Lifestyle Interventions and Independence for Elders (LIFE) study. PloS one, 10(2), e0116058.

Bao, W., Sun, Y., Zhang, T., Zou, L., Wu, X., Wang, D., & Chen, Z. (2020). Exercise Programs for Muscle Mass, Muscle Strength and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis. Aging and Disease, 11(4), 863. JKL International LLC. /pmc/articles/PMC7390512/.

Clark, B. C., Taylor, J. L., Hong, S. L., Law, T. D., & Russ, D. W. (2015). Weaker Seniors Exhibit Motor Cortex Hypoexcitability and Impairments in Voluntary Activation. The journals of gerontology. Series A, Biological sciences and medical sciences, 70(9), 1112–1119.

Brito, M. da C. C., Freitas, C. A. S. L., Mesquita, K. O. de, & Lima, G. K. (2013). Envelhecimento Populacional e os Desafios para a Saúde Pública: Análise da Produção Científica. Revista Kairós-Gerontologia, 16(2), 161–178.

Brucki, S. M. D., Nitrini, R., Caramelli, P., Bertolucci, P. H. F., & Okamoto, I. H. (2003). Sugestões para o uso do mini-exame do estado mental no Brasil. Arquivos de Neuro-Psiquiatria, 61(3 B), 777–781.

Clouston, S. A., Brewster, P., Kuh, D., Richards, M., Cooper, R., Hardy, R., Rubin, M. S., & Hofer, S. M. (2013). The dynamic relationship between physical function and cognition in longitudinal aging cohorts. Epidemiologic reviews, 35(1), 33–50.

Degens, H., Attias, J., Evans, D., Wilkins, F., & Hodson-Tole, E. (2021). The mobility limitation in healthy older people is due to weakness and not slower muscle contractile properties. PLOS ONE, 16(6), e0253531. Public Library of Science.

Eibich, P., Buchmann, N., Kroh, M., Wagner, G. G., Steinhagen-Thiessen, E., Demuth, I., & Norman, K. (2016). Exercise at Different Ages and Appendicular Lean Mass and Strength in Later Life: Results From the Berlin Aging Study II. The journals of gerontology. Series A, Biological sciences and medical sciences, 71(4), 515–520.

Foong, Y. C., Chherawala, N., Aitken, D., Scott, D., Winzenberg, T., & Jones, G. (2016). Accelerometer-determined physical activity, muscle mass, and leg strength in community-dwelling older adults. Journal of cachexia, sarcopenia and muscle, 7(3), 275–283.

Gerage, A. M., Januário, R. S. B., Nascimento, M. A. do, Pina, F. L. C., & Cyrino, E. S. (2013). Impact of 12 weeks of resistance training on physical and functional fitness in elderly women. Revista Brasileira de Cineantropometria & Desempenho Humano, 15(2), 145–154. Universidade Federal de Santa Catarina.

Häkkinen, K., Kraemer, W. J., Newton, R. U., & Alen, M. (2001). Changes in electromyographic activity, muscle fibre and force production characteristics during heavy resistance/power strength training in middle-aged and older men and women. Acta physiologica Scandinavica, 171(1), 51–62.

Jones, C. J., Rikli, R. E., & Beam, W. C. (1999). A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Research quarterly for exercise and sport, 70(2), 113–119.

Kallio, J., Søgaard, K., Avela, J., Komi, P. v., Selänne, H., & Linnamo, V. (2014). Motor unit discharge rate in dynamic movements of the aging soleus. Frontiers in Human Neuroscience, 8(SEP), 1–4. Frontiers Media SA. /pmc/articles/PMC4179534/.

Kirkwood T. (2017). Why and how are we living longer? Experimental physiology, 102(9), 1067–1074.

Larsson, L., Degens, H., Li, M., Salviati, L., Lee, Y. I., Thompson, W., Kirkland, J. L., & Sandri, M. (2019). Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiological reviews, 99(1), 427–511.

Latash, M. L. (2018). Progress in Motor Control: Muscle coactivation: definitions, mechanisms, and functions. Journal of Neurophysiology, 120(1), 88. American Physiological Society. from /pmc/articles/PMC6093955/.

Lohman, T. (1988). Anthropometric Standardization Reference Manual. Champaign(IL)Title. Champaign IL: Human Kinetics Books.

Mohr, M., Nann, M., von Tscharner, V., Eskofier, B., & Nigg, B. M. (2015). Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats. PloS one, 10(11), e0142048.

Milanović, Z., Pantelić, S., Trajković, N., Sporiš, G., Kostić, R., & James, N. (2013). Age-related decrease in physical activity and functional fitness among elderly men and women. Clinical interventions in aging, 8, 549–556.

Osness, W. H. (Wayne H., & Council on Aging and Adult Development (U.S.). (1990). Functional fitness assessment for adults over 60 years : a field based assessment, 24. American Alliance for Health, Physical Education, Recreation, and Dance, Association for Research, Administration, Professional Councils, and Societies, Council on Aging and Adult Development.

Paulo, S. (2009). “Reprodutibilidade e Validade do Questionário de Atividade Física Habitual de Baecke Modificado em Idosos Saudáveis.”

Peter, M. (2018). ACSM’s Resources for The Exercise Physiologist. (L. Randi, K. W. Marcus, & S. E. James, Eds.). Wolters Kluwer.

Plow, E. B., Cunningham, D. A., Bonnett, C., Gohar, D., Bayram, M., Wyant, A., Varnerin, N., Mamone, B., Siemionow, V., Hou, J., Machado, A., & Yue, G. H. (2013). Neurophysiological correlates of aging-related muscle weakness. Journal of neurophysiology, 110(11), 2563–2573.

Rantanen, T., Masaki, K., Foley, D., Izmirlian, G., White, L., & Guralnik, J. M. (1998). Grip strength changes over 27 yr in Japanese-American men. Journal of applied physiology (Bethesda, Md.: 1985), 85(6), 2047–2053.

Radaelli, R., Botton, C. E., Wilhelm, E. N., Bottaro, M., Lacerda, F., Gaya, A., Moraes, K., Peruzzolo, A., Brown, L. E., & Pinto, R. S. (2013). Low- and high-volume strength training induces similar neuromuscular improvements in muscle quality in elderly women. Experimental gerontology, 48(8), 710–716.

Reid, K. F., Pasha, E., Doros, G., Clark, D. J., Patten, C., Phillips, E. M., Frontera, W. R., & Fielding, R. A. (2014). Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. European journal of applied physiology, 114(1), 29–39.

Santos, V. R. dos, Araújo, M. Y. C., Cardoso, M. R., Batista, V. C., Chistofaro, D. G. D., & Gobbo, L. A. (2017). Association of insufficient physical activity with sarcopenia and sarcopenic obesity in individuals aged 50 years or more. Revista de Nutrição, 30(2), 175–184.

Seco, J., Abecia, L. C., Echevarría, E., Barbero, I., Torres-Unda, J., Rodriguez, V., & Calvo, J. I. (2013). A long-term physical activity training program increases strength and flexibility, and improves balance in older adults. Rehabilitation nursing: the official journal of the Association of Rehabilitation Nurses, 38(1), 37–47.

Sit, R. W. S., Choi, S. Y. K., Wang, B., Chan, D. C. C., Zhang, D., Yip, B. H. K., & Wong, S. Y. S. (2021). Neuromuscular exercise for chronic musculoskeletal pain in older people: a randomised controlled trial in primary care in Hong Kong. British Journal of General Practice, 71(704), e226–e236. British Journal of General Practice. Retrieved October 17, 2021, from

Syed-Abdul, M. M. (2020). Benefits of Resistance Training in Older Adults. Current Aging Science, 14(1), 5–9. Bentham Science Publishers Ltd.

Tomás, M. T., Galán-Mercant, A., Carnero, E. A., & Fernandes, B. (2018). Functional Capacity and Levels of Physical Activity in Aging: A 3-Year Follow-up. Frontiers in medicine, 4, 244.

The SENIAM project (Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscle). (2006). Determination of sensor location. The SENIAM Project Website.

Wiedmer, P., Jung, T., Castro, J. P., Pomatto, L. C. D., Sun, P. Y., Davies, K. J. A., & Grune, T. (2021). Sarcopenia – Molecular mechanisms and open questions. Ageing Research Reviews, 65, 101200. Elsevier.

Zembroń-Łacny, A., Dziubek, W., Rogowski, Ł., Skorupka, E., & Dąbrowska, G. (2014). Sarcopenia: monitoring, molecular mechanisms, and physical intervention. Physiological research, 63(6), 683–691.




How to Cite

SILVA, N. de A. .; LIRA JÚNIOR, C.; LISBOA, M. G. da C. .; GONZAGA, J. de M. .; VASCONCELOS, D. de A. .; MENEZES, T. N. de . Relationship between muscle mass and neuromuscular function in the muscular strength of elderly women practicing and non-practicing physical activities. Research, Society and Development, [S. l.], v. 10, n. 17, p. e139101724018, 2021. DOI: 10.33448/rsd-v10i17.24018. Disponível em: Acesso em: 24 jan. 2022.



Health Sciences