Antimicrobial resistance and its statistical correlation with consumption in hospitals: An integrative literature review

Authors

DOI:

https://doi.org/10.33448/rsd-v11i1.24058

Keywords:

Microbial sensitivity tests; Drug utilization; Correlation of data; Antibacterial drug resistance.

Abstract

This integrative review aimed to determine which are the main bacteria that have positive correlations between the increase in antimicrobial consumption and the increase in bacterial resistance in hospitals. The articles were summarized through an integrative review, found in Pubmed® and Embase®, using the following search strategies: ("Microbial Sensitivity Tests"[Mesh]) AND "Hospitals"[Mesh]) AND "Drug Utilization "[Mesh] and 'drug utilization'exp AND 'hospital'exp AND 'antibiotic sensitivity'exp, respectively. Summarizing the author, year of publication, place of study, population studied, consumption assessment methodology and the statistical relationship and the positive correlations found between bacterial species or genera associated with the consumption data of a particular class of antimicrobials. The search strategies found a total of 414 articles, and after applying the inclusion criteria, there were 10 articles that met all the criteria used. The main bacteria or bacterial genera involved with positive correlations were P. aeruginosa (42.6%), E. coli (24.1%) and Acinetobacter spp. (9.3%). Since most of the positive correlations found were related to the same class, however about 48.2% were crossed. P. aeruginosa, E. coli and the genus Acinetobacter spp. stood out as the bacteria with the highest amount of positive correlations. International databases such as GLASS, can strengthen the statistical evidence of this relationship, allowing larger and more diverse samples, however they depend on international cooperation. This work can support pharmacovigilance in hospitals highlighting correlations already elucidated, thus contributing to the optimization of resources.

References

Barrett, T. C., Mok, W. W. K., Murawski, A. M., & Brynildsen, M. P. (2019). Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic. Nature Communications, 10(1), 1177. https://doi.org/10.1038/s41467-019-09058-4

Bell, B. G., Schellevis, F., Stobberingh, E., Goossens, H., & Pringle, M. (2014). A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infectious Diseases, 14(1), 13. https://doi.org/10.1186/1471-2334-14-13

Chandy, S. J., Naik, G. S., Balaji, V., Jeyaseelan, V., Thomas, K., & Lundborg, C. S. (2014). High cost burden and health consequences of antibiotic resistance: the price to pay. The Journal of Infection in Developing Countries, 8(09), 1096–1102. https://doi.org/10.3855/jidc.4745

Davey, P., Marwick, C. A., Scott, C. L., Charani, E., McNeil, K., Brown, E., Gould, I. M., Ramsay, C. R., & Michie, S. (2017). Interventions to improve antibiotic prescribing practices for hospital inpatients. The Cochrane Database of Systematic Reviews, 2, CD003543. https://doi.org/10.1002/14651858.CD003543.pub4

Dellit, T. H., Owens, R. C., McGowan, J. E., Gerding, D. N., Weinstein, R. A., Burke, J. P., Huskins, W. C., Paterson, D. L., Fishman, N. O., Carpenter, C. F., Brennan, P. J., Billeter, M., & Hooton, T. M. (2007). Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship. Clinical Infectious Diseases, 44(2), 159–177. https://doi.org/10.1086/510393

Eagye, K. J., & Nicolau, D. P. (2011). Change in antipseudomonal carbapenem susceptibility in 25 hospitals across 9 years is not associated with the use of ertapenem. Journal of Antimicrobial Chemotherapy, 66(6), 1392–1395. https://doi.org/10.1093/jac/dkr141

Erdeljić, V., Francetić, I., Bošnjak, Z., Budimir, A., Kalenić, S., Bielen, L., Makar-Aušperger, K., & Likić, R. (2011). Distributed lags time series analysis versus linear correlation analysis (Pearson’s r) in identifying the relationship between antipseudomonal antibiotic consumption and the susceptibility of Pseudomonas aeruginosa isolates in a single Intensive Care Unit. International Journal of Antimicrobial Agents, 37(5), 467–471. https://doi.org/10.1016/j.ijantimicag.2010.11.030

Falagas, M. E., & Kopterides, P. (2006). Risk factors for the isolation of multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: a systematic review of the literature. Journal of Hospital Infection, 64(1), 7–15. https://doi.org/10.1016/j.jhin.2006.04.015

Fleming Fund. (2021). Aims & Values. 2021. https://www.flemingfund.org/about-us/our-aims/

Fukuda, H., Hosaka, M., Hirai, K., & Iyobe, S. (1990). New norfloxacin resistance gene in Pseudomonas aeruginosa PAO. Antimicrobial Agents and Chemotherapy, 34(9), 1757–1761. https://doi.org/10.1128/AAC.34.9.1757

Gallini, A., Degris, E., Desplas, M., Bourrel, R., Archambaud, M., Montastruc, J. L., Lapeyre-Mestre, M., & Sommet, A. (2010). Influence of fluoroquinolone consumption in inpatients and outpatients on ciprofloxacin-resistant Escherichia coli in a university hospital. Journal of Antimicrobial Chemotherapy, 65(12), 2650–2657. https://doi.org/10.1093/jac/dkq351

Guo, W., He, Q., Wang, Z., Wei, M., Yang, Z., Du, Y., Wu, C., & He, J. (2015). Influence of antimicrobial consumption on gram-negative bacteria in inpatients receiving antimicrobial resistance therapy from 2008-2013 at a tertiary hospital in Shanghai, China. American Journal of Infection Control, 43(4), 358–364. https://doi.org/10.1016/j.ajic.2014.12.010

Hanberger, H., Diekema, D., Fluit, A., Jones, R., Struelens, M., Spencer, R., & Wolff, M. (2001). Surveillance of antibiotic resistance in European ICUs. Journal of Hospital Infection, 48(3), 161–176. https://doi.org/10.1053/jhin.2001.0987

Hayes, A. F., & Montoya, A. K. (2017). A Tutorial on Testing, Visualizing, and Probing an Interaction Involving a Multicategorical Variable in Linear Regression Analysis. Communication Methods and Measures, 11(1), 1–30. https://doi.org/10.1080/19312458.2016.1271116

Hirai, K., Suzue, S., Irikura, T., Iyobe, S., & Mitsuhashi, S. (1987). Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 31(4), 582–586. https://doi.org/10.1128/AAC.31.4.582

Hsu, L.-Y., Tan, T.-Y., Tam, V. H., Kwa, A., Fisher, D. A., & Koh, T.-H. (2010). Surveillance and Correlation of Antibiotic Prescription and Resistance of Gram-Negative Bacteria in Singaporean Hospitals. Antimicrobial Agents and Chemotherapy, 54(3), 1173–1178. https://doi.org/10.1128/AAC.01076-09

Jacoby, T. S., Kuchenbecker, R. S., dos Santos, R. P., Magedanz, L., Guzatto, P., & Moreira, L. B. (2010). Impact of hospital-wide infection rate, invasive procedures use and antimicrobial consumption on bacterial resistance inside an intensive care unit. Journal of Hospital Infection, 75(1), 23–27. https://doi.org/10.1016/j.jhin.2009.11.021

Jiang, X.-T., Ye, L., Ju, F., Wang, Y.-L., & Zhang, T. (2018). Toward an Intensive Longitudinal Understanding of Activated Sludge Bacterial Assembly and Dynamics. Environmental Science & Technology, 52(15), 8224–8232. https://doi.org/10.1021/acs.est.7b05579

Kuo, S.-C., Chang, S.-C., Wang, H.-Y., Lai, J.-F., Chen, P.-C., Shiau, Y.-R., Huang, I.-W., & Lauderdale, T.-L. Y. (2012). Emergence of extensively drug-resistant Acinetobacter baumannii complex over 10 years: Nationwide data from the Taiwan Surveillance of Antimicrobial Resistance (TSAR) program. BMC Infectious Diseases, 12(1), 200. https://doi.org/10.1186/1471-2334-12-200

Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nature Medicine, 10(S12), S122–S129. https://doi.org/10.1038/nm1145

Loeffler, J. M., Garbino, J., Lew, D., Harbarth, S., & Rohner, P. (2003). Antibiotic Consumption, Bacterial Resistance and their Correlation in a Swiss University Hospital and its Adult Intensive Care Units. Scandinavian Journal of Infectious Diseases, 35(11–12), 843–850. https://doi.org/10.1080/00365540310016646

MacAdam, H., Zaoutis, T. E., Gasink, L. B., Bilker, W. B., & Lautenbach, E. (2006). Investigating the association between antibiotic use and antibiotic resistance: impact of different methods of categorising prior antibiotic use. International Journal of Antimicrobial Agents, 28(4), 325–332. https://doi.org/10.1016/j.ijantimicag.2006.04.014

Miliani, K., L’Hériteau, F., Lacavé, L., Carbonne, A., & Astagneau, P. (2011). Imipenem and ciprofloxacin consumption as factors associated with high incidence rates of resistant Pseudomonas aeruginosa in hospitals in northern France. Journal of Hospital Infection, 77(4), 343–347. https://doi.org/10.1016/j.jhin.2010.11.024

Monsen, T., Rönnmark, M., Olofsson, C., & Wiström, J. (1999). Antibiotic susceptibility of staphylococci isolated in blood cultures in relation to antibiotic consumption in hospital wards. Scandinavian Journal of Infectious Diseases, 31(4), 399–404. https://doi.org/10.1080/00365549950163860

Muraki, Y., Kitamura, M., Maeda, Y., Kitahara, T., Mori, T., Ikeue, H., Tsugita, M., Tadano, K., Takada, K., Akamatsu, T., Yamada, T., Yamada, T., Shiraishi, T., & Okuda, M. (2013). Nationwide surveillance of antimicrobial consumption and resistance to Pseudomonas aeruginosa isolates at 203 Japanese hospitals in 2010. Infection, 41(2), 415–423. https://doi.org/10.1007/s15010-013-0440-0

Pendleton, J. N., Gorman, S. P., & Gilmore, B. F. (2013). Clinical relevance of the ESKAPE pathogens. Expert Review of Anti-Infective Therapy, 11(3), 297–308. https://doi.org/10.1586/eri.13.12

Perez, F., Hujer, A. M., Hujer, K. M., Decker, B. K., Rather, P. N., & Bonomo, R. A. (2007). Global Challenge of Multidrug-Resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 51(10), 3471–3484. https://doi.org/10.1128/AAC.01464-06

Poirel, L., Madec, J.-Y., Lupo, A., Schink, A.-K., Kieffer, N., Nordmann, P., & Schwarz, S. (2018). Antimicrobial Resistance in Escherichia coli. Microbiology Spectrum, 6(4). https://doi.org/10.1128/microbiolspec.ARBA-0026-2017

Sousa, D., Castelo-Corral, L., Gutierrez-Urbon, J.-M., Molina, F., Lopez-Calvino, B., Bou, G., & Llinares, P. (2013). Impact of ertapenem use on Pseudomonas aeruginosa and Acinetobacter baumannii imipenem susceptibility rates: collateral damage or positive effect on hospital ecology? Journal of Antimicrobial Chemotherapy, 68(8), 1917–1925. https://doi.org/10.1093/jac/dkt091

Tacconelli, E., De Angelis, G., Cataldo, M. A., Mantengoli, E., Spanu, T., Pan, A., Corti, G., Radice, A., Stolzuoli, L., Antinori, S., Paradisi, F., Carosi, G., Bernabei, R., Antonelli, M., Fadda, G., Rossolini, G. M., & Cauda, R. (2009). Antibiotic usage and risk of colonization and infection with antibiotic-resistant bacteria: a hospital population-based study. Antimicrobial Agents and Chemotherapy, 53(10), 4264–4269. https://doi.org/10.1128/AAC.00431-09

The World Bank. (2021). DataBank. The World Bank. https://databank.worldbank.org/home.aspx

UNDP. (2018). Human Development Indices and Indicators. In United Nations Development Programme (UNDP).

WEF. (2013). Global Risks 2013: Eighth Edition. WHO. http://www3.weforum.org/docs/WEF_GlobalRisks_Report_2013.pdf

Wertheimer, A. I. (1986). The defined daily dose system (DDD) for drug utilization review. Hospital Pharmacy, 21(3), 258, 233-4, 239-41. http://europepmc.org/abstract/MED/10317694

WHO. (2014). Antimicrobial resistance: global report on surveillance 2014. In World Health Organization. https://apps.who.int/iris/handle/10665/112642

WHO. (2015). Global Action Plan: on Antimicrobial Resistance. WHO. https://apps.who.int/iris/bitstream/handle/10665/193736/9789241509763_eng.pdf?sequence=1

WHO. (2019). Definition and general considerations. World Health Organization. https://www.whocc.no/ddd/definition_and_general_considera/

WHO. (2020). GLASS Early Implementation Report: 2020. WHO. https://www.who.int/glass/resources/publications/early-implementation-report-2020/en/

WHO. (2021a). ATC/DDD Index 2021. World Health Organization. https://www.whocc.no/atc_ddd_index/WHO. (2021b). Global Antimicrobial Resistance Surveillance System (GLASS). WHO. https://www.who.int/glass/en/

Xu, J., Sun, Z., Li, Y., & Zhou, Q. (2013). Surveillance and Correlation of Antibiotic Consumption and Resistance of Acinetobacter baumannii complex in a Tertiary Care Hospital in Northeast China, 2003–2011. International Journal of Environmental Research and Public Health, 10(4), 1462–1473. https://doi.org/10.3390/ijerph10041462

Zou, Y. M., Ma, Y., Liu, J. H., Shi, J., Fan, T., Shan, Y. Y., Yao, H. P., & Dong, Y. L. (2015). Trends and correlation of antibacterial usage and bacterial resistance: time series analysis for antibacterial stewardship in a Chinese teaching hospital (2009–2013). European Journal of Clinical Microbiology & Infectious Diseases, 34(4), 795–803. https://doi.org/10.1007/s10096-014-2293-6

Published

15/01/2022

How to Cite

ARAUJO, P. M.; BRAÚNA, C. da C.; LEMOS, S. C. L.; GOMES, D. M.; SANTOS, V. R. dos; SILVA, S. F. da .; LOPES, L. da S. Antimicrobial resistance and its statistical correlation with consumption in hospitals: An integrative literature review. Research, Society and Development, [S. l.], v. 11, n. 1, p. e55611124058, 2022. DOI: 10.33448/rsd-v11i1.24058. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24058. Acesso em: 15 jan. 2025.

Issue

Section

Review Article