The use of NDVI derived from Pléiade images in the analysis of the vegetation structure in two forest fragments
DOI:
https://doi.org/10.33448/rsd-v11i1.24170Keywords:
Images; Pleiades; Vegetation structure; NDVI.Abstract
The vegetation index generated through satellite images is one of the most used data in monitoring the structural parameters of vegetation in different ecosystems existing in Brazil. In this work, the characterization of the NDVI was carried out using Pléiades images with a spatial resolution of 2 meters with four spectral bands, in two forest areas corresponding to the municipality of Moju-PA whose location is 3º03`14,85409" south latitude and 48º59`36 ,15357" west longitude and another in the city of Belém-PA located at 1°26'30" S latitude and 48°27'0" W longitude. Image processing was done through the Global Mapper software. Maximum value of the NDVI for the densest vegetation reached 0.654 while the average value was 0.500 for managed forest area located in Moju-PA. In the other forest fragment located within Embrapa Amazônia Oriental, the maximum value of the NDVI indicated a reflectance value of 0.849, and the average value reached approximately 0.790. The profile of the vegetation curve generated through Pléiades images showed a positive behavior for the two forest fragments, being in the range of (0.401 to 0.654) for f forest managed from Moju-Pa and from (0.736 to 0.849) for the secondary forest of Belém-PA. Based on the observed results, it can be concluded that the NDVI, derived from Pléiades satellite images, can be used reliably in the analysis and determination of the NDVI.
References
Amaral, S., Soares, J. V., Alves, D. S., Mello, E. M. K., Almeida, S. A. S., Dilva, O. F. & Silveira, A. M. (1996). Relações entre Índice de Área Foliar (LAI), Área Basal e Índice de Vegetação (NDVI) em relação a diferentes estágios de crescimento secundário na Floresta Amazônica em Rondônia. In: VII Simpósio Brasileiro de Sensoriamento Remoto, Salvador. Anais. Salvador, 485- 489.
Baptista, M. (2020). Análise temporal de NDVI sobre a cobertura vegetal da Área de Proteção Ambiental (APA) Costa Brava em Balneário Camboriú (SC). Metodologias E Aprendizado, 2, 197–202.
Barbosa, A. H. S., Carvalho, R. G. & Camacho, R. G. V. (2017). Aplicação do NDVI para a Análise da Distribuição Espacial da Cobertura Vegetal na Região Serrana de Martins e Portalegre – Estado do Rio Grande do Norte. Revista do Departamento de Geografia, 33 128-143.
Barros, A. S., Farias, L. M. & Marinho, J. L. (2020). A Aplicação do Índice de Vegetação por Diferença Normalizada (NDVI) na Caracterização da Cobertura Vegetativa de Juazeiro Do Norte – CE . Revista Brasileira de Geografia Física 13(6), 2885-2895.
Bernardes, S. (1996). Índices de vegetação e valores de proporção na caracterização de floresta tropical primária e estádios sucessionais na área de influência da Floresta de Tapajós-Estado do Pará. Dissertação (Mestrado em Sensoriamento Remoto) – Instituto Nacional de Pesquisas Espaciais.
Brandão, Z. N., Bezerra, M. V. C., Freire, E. C. & Silva, B. B., (2005). Determinação de Índices de Vegetação usando Imagens de Satélite para uso em Agricultura de Precisão. In: V Congresso Brasileiro de Algodão, V CBA, Salvador, BA, Anais. Campina Grande: CNPA.
Costa, A. S., Queiroz, J. C. B., Chermont, L. S., Lameira, O. A., Souza, E. B., Diniz, M. B., Moura, H. P., & Costa, D. L. C. (2021). Deforestation forecasts in the Legal Amazon using intervention models. Research, Society and Development, 10 (9).
Devries, B., Verbesselt, J., Kooistra, L. & Herold, M. (2015). Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series. Remote Sensing of Environment, 161, 107-121.
Embrapa (2013). Missão Pléiades. <https://www.cnpm.embrapa.br/projetos/sat/conteudo/missao_Pléiades.html>.
Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. Editora Artes Médicas.
Huete, A.R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25, 295– 309, 10.1016/0034-4257(88)90106-X.
IPCC. Intergovernamental Panel On Climate Changes. (2000). Land use, land use change, and forestry special report. Summary for Policymakers. Based on WATSON, R et al. as Core Writing Team. Montreal.
Korhonen, L., Korhonen, K. T., Rautiainen, M. & Stenberg, P. (2006). Estimation of Forest Canopy Cover: a Comparison of Field Measurement Techniques. Silva Fenicca, 40, 577-588.
Liu, W. T. H. (2007). Aplicações de Sensoriamento Remoto. Editora UNIDERP.
Luz, C. C. S., Ramos, A. W. P., Barros, C. A., Neves, S. M. A. S., Silva, J. S. V. & Galvanin, E. A. S. (2021). ‘NDVI e EVI Aplicados à Análise da Dinâmica Temporal da Cobertura Vegetal e Usos da Terra da Bacia do Córrego Padre Inácio-Mato Grosso, Brasil’, Anuário do Instituto de Geociências, vol. 44: 35438.
Magurran, A. E. (2013). Measuring Biological Diversity. John Wiley & Sons.
Melo, E. T., Sales, M. C. L. & Oliveira, J. G. B. (2011). Aplicação do índice de vegetação por diferença normalizada (NDVI) para análise da degradação ambiental da Microbacia Hidrográfica do Riacho dos Cavalos, Crateús - Ce. Raega - O Espaço Geográfico em Análise, v. 23, p. 520-533.
Moreira, M. A. (2011). Fundamentos do sensoriamento remoto e metodologias de aplicação. (4a ed.), Atualizada e ampliada. Ed. UFV, 422 p.
Nielsen, M. M. (2015). Remote sensing for urban planning and management: The use of window-independent context segmentation to extract urban features in Stockholm. Computers, environment and urban systems. 52, 1-9.
Oliveira, L. N., & Aquino, C. M. S. (2000). Índice da Vegetação da Diferença Normalizada (NDVI) na Sub-Bacia Hidrográfica do Rio Gurguéia, Piauí-Brasil: Análise do efeito da expansão agrícola. Revista Geoaraguaia. 10(2), 126-143.
Pioltine, L. F., Maltauro, R. F. & Pons, N. A. D. (2018). Análise multitemporal de NDVI sobre a cobertura vegetal da APA da Serra da Mantiqueira. In: Congresso Nacional de Meio Ambiente, 15, Poços de Caldas/MG, Congresso: Instituto Federal de Educação Ciência e Tecnologia, 1-5.
Poelking, E. L., Lauermann, A. & Dalmolin, R. S. D. (2007). Imagens CBERS na geração de NDVI no estudo da dinâmica da vegetação em período de estresse hídrico. In: XIII Simpósio Brasileiro De Sensoriamento Remoto, Florianópolis, Brasil. Anais. Florianópolis: INPE, 4145-4150.
Polonio, V. D. (2015). Índices de vegetação na mensuração do estoque de carbono em áreas com cana-de-açúcar. 73p. Dissertação (Mestrado em Agronomia: Energia na Agricultura). Universidade Estadual paulista, Faculdade de Ciências Agronômicas de Botucatu.
Ponzoni, F. J. & Shimabukuro, Y. E. (2007). Sensoriamento remoto no estudo da vegetação. Parêntese Editora.
Ponzoni, F. J., Shimabukuro, Y. E. & Kuplich, T. M. (2012). Sensoriamento Remoto da vegetação. (2a ed.), Oficina de Textos, 11(3-4), 164p.
Ravazzano, F., & Silva Falcão, O. E. (2021). A utilização do sistema de monitoramento por NDVI na análise de riscos para concessão de licenciamento ambiental na APA litoral Norte-Ba: uma necessária abordagem das políticas de compliance ambiental. Revista do Programa de Pós Graduação em Direito da UFBA, 31(1), 204-233.
Robinson, N. P. et al. (2017). Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States. Remote Sensing. 9, 863.
Rouse, J. W., Haas, R. H., Schell, J. A. & Deeering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS (Earth Resources Technology Satellite). In: Proceedings Of The Third Erts Symposium, SP-351 Goddard Space Flight Center, Washington: NASA, p. 309–317.
Vieira, S. A., Aidar, M., Baker, T. R., Camargo, P. B., Chave, J., Delitti, W. B. C., Higuchi, N., Joly, C. A., Martinelli, L. A., Phillips, O. L. & Trumbore, S. E. (2008). Estimation of biomass and carbono stocks: the case of the Atlantic Forest. Biota Neotropica, 8, 21-29.
Watzlawick, L. F. (2003). Estimativa de biomassa e carbono em floresta ombrófila mista e plantações florestais a partir de dados de imagens do satélite Ikonos II. 28(1), 120.
Watzlawick, L. F., Kirchner, F. F. & Sanquetta, C. R. (2009). Estimativa de biomassa e carbono em floresta com araucária utilizando imagens do satélite Ikonos II. Ciência Florestal, 19, 169-181.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Anderson da Silva Costa; Osmar Alves Lameira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.