Development of antimicrobial resistance due to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

Authors

DOI:

https://doi.org/10.33448/rsd-v10i16.24207

Keywords:

Severe Acute Respiratory Syndrome Coronavirus 2; COVID-19; Pandemic; Public health; Antibiotics; Bacteria; Antimicrobial resistance; Bacterial infections.

Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a new coronavirus identified in 2019. This disease, which may cause a serious respiratory infection, has been designated an international public health emergency and is being treated with several types of antivirals, antibiotics, and antifungals. While society works hard to combat the coronavirus disease 2019 (COVID-19) pandemic, it is equally vital to be prepared for the outbreak’s notorious effects on the development of antimicrobial resistance (AMR). Antibiotic misuse and overuse are predicted to have serious ramifications for antibiotic stewardship programs and AMR management worldwide. Importantly, the global influence on the creation of novel antimicrobial resistance is uncertain due to a paucity of data on antimicrobial usage during the COVID-19 pandemic. The current pandemic might be a useful tool for depicting the spread of antimicrobial resistance and underlining the difficulties in managing the issue once it has emerged. This review aims to assess available data on bacterial infections in coronavirus-infected patients and to offer insight into the development of AMR in the face of the current public health issue.

References

Bai, L., Du, P., Du, Y., Sun, H., Zhang, P., Wan, Y., Lin, Q., Fanning, S., Cui, S., & Wu, Y. (2019). Detection of plasmid-mediated tigecycline-resistant gene tet(X4) in Escherichia coli from pork, sichuan and shandong provinces, China, february 2019. Eurosurveillance, 24(25), 7–10. https://doi.org/10.2807/1560-7917.ES.2019.24.25.1900340

Ban on antibiotics as growth promoters in animal feed enters into effect. (2005). Brussels: European Commission.

Barker, K. (2020). Lawmakers, experts warn of U.S. reliance on foreign-made drugs, medical products. https://www.joplinglobe.com/news/local_news/lawmakers-experts-warn-of-u-s-reliance-on-foreign-made/article_cc1332e0-e7e7-5cba-9089-f9ec5bf8a3f6.html

Baron, S. A., Devaux, C., Colson, P., Raoult, D., & Rolain, J. M. (2020). Teicoplanin: An alternative drug for the treatment of COVID-19? International Journal of Antimicrobial Agents, 55(4), 105944. https://doi.org/10.1016/j.ijantimicag.2020.105944

Baur, D., Gladstone, B., Burket, F., Carrara, E., Foschi, F., Dobele, S., & Tacconelli, E. (2017). Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: A systematic review and meta-analysis. The Lancet Infectious Diseases, 17(9), 990–1001. https://doi.org/10.1016/S1473-3099(17)30325-0

Bhatraju, P. K., Ghassemieh, B. J., Nichols, M., Kim, R., Jerome, K. R., Nalla, A. K., Greninger, A. L., Pipavath, S., Wurfel, M. M., Evans, L., Kritek, P. A., West, T. E., Luks, A., Gerbino, A., Dale, C. R., Goldman, J. D., O’Mahony, S., & Mikacenic, C. (2020). Covid-19 in critically ill patients in the Seattle region — Case series. New England Journal of Medicine, 382(21), 2012–2022. https://doi.org/10.1056/nejmoa2004500

Bhatt, T., Kumar, V., Pande, S., Malik, R., Khamparia, A., & Gupta, D. (2021). A review on COVID-19. Studies in Computational Intelligence, 924(April), 25–42. https://doi.org/10.1007/978-3-030-60188-1_2

Borek, A. J., Wanat, M., Sallis, A., Ashiru-Oredope, D., Atkins, L., Beech, E., Hopkins, S., Jones, L., McNulty, C., Shaw, K., Taborn, E., Butler, C., Chadborn, T., & Tonkin-Crine, S. (2019). How can national antimicrobial stewardship interventions in primary care be improved? A stakeholder consultation. Antibiotics, 8(4). https://doi.org/10.3390/antibiotics8040207

Cantón, R., & Coque, T. M. (2006). The CTX-M β-lactamase pandemic. Current Opinion in Microbiology, 9(5), 466–475. https://doi.org/10.1016/j.mib.2006.08.011

Cao, J., Tu, W., Cheng, W., & Yu, L. (2019). Clinical features and short-term outcomes of 102 patients with coronavirus disease 2019 in Wuhan , China. Oxford University Press, 238, 4–21.

Castanheira, M., Griffin, M. A., Deshpande, L. M., Mendes, R. E., Jones, R. N., & Flamm, R. K. (2016). Detection of mcr-1 among Escherichia coli clinical isolates collected worldwide as part of the SENTRY Antimicrobial Surveillance Program in 2014 and 2015. Antimicrobial Agents and Chemotherapy, 60(9), 5623–5624. https://doi.org/10.1128/AAC.01267-16

Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D., Wang, H., Wang, T., Zhang, X., Chen, H., Yu, H., Zhang, X., Zhang, M., Wu, S., Song, J., Chen, T., Han, M., Li, S., Luo, X., Zhao, J., & Ning, Q. (2020). Clinical and immunological features of severe and moderate coronavirus disease 2019. Journal of Clinical Investigation, 130(5), 2620–2629. https://doi.org/10.1172/JCI137244

Chen, T., Wu, D., Chen, H., Yan, W., Yang, D., Chen, G., Ma, K., Xu, D., Yu, H., Wang, H., Wang, T., Guo, W., Chen, J., Ding, C., Zhang, X., Huang, J., Han, M., Li, S., Luo, X., … Ning, Q. (2020). Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ, 368. https://doi.org/10.1136/bmj.m1091

Chen, X., Zhao, B., Qu, Y., Chen, Y., Xiong, J., Feng, Y., Men, D., Huang, Q., Liu, Y., Yang, B., Ding, J., & Li, F. (2020). Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clinical Infectious Diseases, 17. https://doi.org/10.1093/cid/ciaa449

Chen, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. The Lancet. https://doi.org/10.1016/S0140-6736(20)30211-7

Clancy, C. J., & Nguyen, M. (2020). Coronavirus disease 2019, superinfections, and antimicrobial development: What can we expect? Clinical Infectious Diseases, 71(10), 2736–2743. https://doi.org/10.1093/cid/ciaa524

Cong, W., Poudel, A. N., Aihusein, N., Wang, H., Yao, G., & Lambert, H. (2021). Antimicrobial use in covid-19 patients in the first phase of the sars-cov-2 pandemic: A scoping review. Antibiotics, 10(6), 1–14. https://doi.org/10.3390/antibiotics10060745

Dong, X., Cao, Y. yuan, Lu, X. xia, Zhang, J. jin, Du, H., Yan, Y. qin, Akdis, C. A., & Gao, Y. dong. (2020). Eleven faces of coronavirus disease 2019. Allergy: European Journal of Allergy and Clinical Immunology, 75(7), 1699–1709. https://doi.org/10.1111/all.14289

Du, Y., Tu, L., Zhu, P., Mu, M., Wang, R., Yang, P., Wang, X., Hu, C., Ping, R., Hu, P., Li, T., Cao, F., Chang, C., Hu, Q., Jin, Y., & Xu, G. (2020). Clinical features of 85 fatal cases of COVID-19 from Wuhan: A retrospective observational study. American Journal of Respiratory and Critical Care Medicine, 201(11), 1372–1379. https://doi.org/10.1164/rccm.202003-0543OC

Gorbalenya, A. E., Baker, S. C., Baric, R. S., de Groot, R. J., Drosten, C., Gulyaeva, A. A., Haagmans, B. L., Lauber, C., Leontovich, A. M., Neuman, B. W., Penzar, D., Perlman, S., Poon, L. L. M., Samborskiy, D. V., Sidorov, I. A., Sola, I., & Ziebuhr, J. (2020). The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5(4), 536–544. https://doi.org/10.1038/s41564-020-0695-z

Goyal, P., Choi, J., & Pinheiro, L. (2020). Clinical characteristics of Covid-19 in New York City. New England Journal of Medicine, 382(24), 2372–2374. https://doi.org/10.1056/NEJMc2010419

Grasselli, G., Zangrillo, A., Zanella, A., Antonelli, M., Cabrini, L., Castelli, A., Cereda, D., Coluccello, A., Foti, G., Fumagalli, R., Iotti, G., Latronico, N., Lorini, L., Merler, S., Natalini, G., Piatti, A., Ranieri, M. V., Scandroglio, A. M., Storti, E., … Pesenti, A. (2020). Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA - Journal of the American Medical Association, 323(16), 1574–1581. https://doi.org/10.1001/jama.2020.5394

Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, C., He, J., Liu, L., Shan, H., Lei, C., Hui, D. S. C., Du, B., Li, L., Zeng, G., Yuen, K.-Y., Chen, R., Tang, C., Wang, T., Chen, P., Xiang, J., … Zhong, N. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine, 382(18), 1708–1720. https://doi.org/10.1056/nejmoa2002032

Guidance on COVID-19: Interim guidance for primary care. (2020). HRM Government. https://www.gov.uk/government/ publications/wn- cov- guidance- for- primary- care/wn- cov- interim- guidance- for-primary-care

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(January), 497–506.

IAGG. (2019). No time to wait: securing the future from drug-resistant infections. https://www.who.int/antimicrobial-resistance/interagency-%0Acoordination- group/final- report/en

Kahn, L. H. (2017). Antimicrobial resistance: A one health perspective. Transactions of the Royal Society of Tropical Medicine and Hygiene, 111(6), 255–260. https://doi.org/10.1093/trstmh/trx050

Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents, 55(3), 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924

Langford, B. J., So, M., Raybardhan, S., Leung, V., Westwood, D., MacFadden, D. R., Soucy, J. P. R., & Daneman, N. (2020). Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clinical Microbiology and Infection, 26(12), 1622–1629. https://doi.org/10.1016/j.cmi.2020.07.016

Laxminarayan, R., Matsoso, P., Pant, S., Brower, C., Røttingen, J. A., Klugman, K., & Davies, S. (2016). Access to effective antimicrobials: A worldwide challenge. The Lancet, 387(10014), 168–175. https://doi.org/10.1016/S0140-6736(15)00474-2

Lian, J., Jin, X., Hao, S., Cai, H., Zhang, S., Zheng, L., Jia, H., Hu, J., Gao, J., Zhang, Y., Zhang, X., Yu, G., Wang, X., Gu, J., Ye, C., Jin, C., Lu, Y., Yu, X., Yu, X., … Yang, Y. (2020). Analysis of epidemiological and clinical features in older patients with coronavirus disease 2019 (COVID-19) outside Wuhan. Clinical Infectious Diseases, 71(15), 740–747. https://doi.org/10.1093/cid/ciaa242

Liang, Z., Li, L., Wang, Y., Chen, L., Kong, X., Hong, Y., Lan, L., Zheng, M., Guang-Yang, C., Liu, H., Shen, X., Luo, C., Li, K. K., Chen, K., & Jiang, H. (2011). Molecular basis of NDM-1, a new antibiotic resistance determinant. PLoS ONE, 6(8), 4–11. https://doi.org/10.1371/journal.pone.0023606

Liu, Y., Wang, Y., Walsh, T., Yi, L., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L., & Gu, D. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. The Lancet Infectious Disease, 16(2), 161–168. https://doi.org/10.1016/S1473-3099(15)00424-7

Manohar, P., Loh, B., & Leptihn, S. (2020). Will the overuse of antibiotics during the coronavirus pandemic accelerate antimicrobial resistance of bacteria? Infectious Microbes and Diseases, 2(3), 87–88. https://doi.org/10.1097/im9.0000000000000034

Murray, A. K. (2020). The novel coronavirus COVID-19 outbreak: Global implications for antimicrobial resistance. Frontiers in Microbiology, 11(May), 1–4. https://doi.org/10.3389/fmicb.2020.01020

Nordmann, P., Poirel, L., Walsh, T., & Livermore, D. (2011). The emerging NDM carbapenemases. Trends in Microbiology, 19(12). https://doi.org/10.1016/j.tim.2011.09.005

O’Neil, J. (2016). Trackling drug-resistant infections globally: final report and recommendations.

ÖstholmBalkhed, Å., Tärnberg, M., Nilsson, M., Nilsson, L. E., Hanberger, H., & Hällgren, A. (2018). Duration of travel-associated faecal colonisation with ESBL-producing enterobacteriaceae - A one year follow-up study. PLoS ONE, 13(10), 1–12. https://doi.org/10.1371/journal.pone.0205504

Pedersen, S. F., & Ho, Y. C. (2020). SARS-CoV-2: A storm is raging. Journal of Clinical Investigation, 130(5), 2202–2205. https://doi.org/10.1172/JCI137647

Rawson, T. M., Moore, L. S. P., Castro-Sanchez, E., Charani, E., Davies, F., Satta, G., Ellington, M. J., & Holmes, A. H. (2020). COVID-19 and the potential long-term impact on antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 75(7), 1681–1684. https://doi.org/10.1093/jac/dkaa194

Rawson, T. M., Moore, L. S. P., Zhu, N., Ranganathan, N., Skolimowska, K., Gilchrist, M., Satta, G., Cooke, G., & Holmes, A. (2020). Bacterial and fungal coinfection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clinical Infectious Diseases, 71(9), 2459–2468. https://doi.org/10.1093/cid/ciaa530

Ruan, Z., & Feng, Y. (2016). BacWGSTdb, a database for genotyping and source tracking bacterial pathogens. Nucleic Acids Research, 44(D1), D682–D687. https://doi.org/10.1093/nar/gkv1004

Walsh, T., & Wu, Y. (2016). China bans colistin as a feed additive for animals. The Lancet Infectious Disease, 16(10). https://doi.org/10.1016/S1473-3099(16)30329-2

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., & Peng, Z. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA - Journal of the American Medical Association, 323(11), 1061–1069. https://doi.org/10.1001/jama.2020.1585

Wang, Z., Yang, B., Li, Q., Wen, L., & Zhang, R. (2020). Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clinical Infectious Diseases, 71(15), 769–777. https://doi.org/10.1093/cid/ciaa272

White, A., & Hughes, J. M. (2019). Critical importance of a One Health approach to antimicrobial resistance. EcoHealth, 16(3), 404–409. https://doi.org/10.1007/s10393-019-01415-5

WHO. (2020a). Clinical management of severe acute respiratory infection when COVID-19 is suspected. https://www.who.int/publications-detail/clinic al-management-of-severe-acute-respiratory-infection-when-novel-corona virus-(ncov)-infection-is-suspected

WHO. (2020b). WHO campaigns: World Antibiotic Awareness Week.

WHO. (2021). Coronavirus disease (COVID-19) pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019

Xu, X. W., Wu, X. X., Jiang, X. G., Xu, K. J., Ying, L. J., Ma, C. L., Li, S. B., Wang, H. Y., Zhang, S., Gao, H. N., Sheng, J. F., Cai, H. L., Qiu, Y. Q., & Li, L. J. (2020). Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series. The BMJ, 368(January), 1–7. https://doi.org/10.1136/bmj.m606

Yang, X., Yu, Y., Xu, J., Shu, H., Xia, J., Liu, H., Wu, Y., Zhang, L., Yu, Z., Fang, M., Yu, T., Wang, Y., Pan, S., Zou, X., Yuan, S., & Shang, Y. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med., 8(5), 475–481. https://doi.org/10.1016/S2213-2600(20)30079-5

Zhou, F. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Journal of Medicine Study & Research, 3(1), 01–02. https://doi.org/10.24966/msr-5657/100015

Downloads

Published

16/12/2021

How to Cite

GOULART, D. B. Development of antimicrobial resistance due to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Research, Society and Development, [S. l.], v. 10, n. 16, p. e479101624207, 2021. DOI: 10.33448/rsd-v10i16.24207. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24207. Acesso em: 26 nov. 2024.

Issue

Section

Health Sciences