Curcumins and its derivatives as potential inhibitors of New Coronavirus (COVID-19) main protease: an in silico strategy

Authors

DOI:

https://doi.org/10.33448/rsd-v11i1.24334

Keywords:

SARS-CoV-2; 3CLpro; New therapeutic tools approach; Natural products.

Abstract

Coronavirus (COVID-19) disease outbreak caused a worldwide pandemic with a powerful lethal potential and still, there is no specific treatment to it. Natural bioactive molecules like curcumins were investigated in this work aiming to block the active site of COVID-19 Main protease (Mpro), since they present several biological activities, being more suitable in terms of fewer side effects, once this disease overloads the immune system of patients. Hereby, curcumin and several derivatives were screened for their ability to react with Mpro receptors (PDB: 6LU7). N3, Azithromycin (AZT), and Baracitinib (BRT) were evaluated as positive controls and in combined therapeutics possibilities with curcumins. N3, AZT, and BRT bound to different protein receptors, and also it was observed that N3 bound in the same site as hexahydrocurcumin and curcumin glucuronide bound at the AZT’s site and bisdemethoxycurcumin, curcumin, curcumin sulfate, cyclocurcumin, demethoxycurcumin, dihydrocurcumin and hexahydrocurcuminol bound at BRT’s site. All molecules analyzed have high force interaction fields. Once the viral activity is mainly intracellular, these compounds also were evaluated for their hydropathic abilities. All molecules were classified and considered capable of membrane cell invading. These results suggest that the therapeutic approach of the curcumin derivatives associated with AZT and the antiviral inhibitor N3 is promissory for future evaluation of their synergism in in vitro and in vivo tests to define their additional viability in the treatment of COVID-19.

References

Aboelhadid, S. M., El-Ashram, S., Hassan, K. M., Arafa, W. M., & Darwish, A. B. E. (2019). Hepato-protective effect of curcumin and silymarin against Eimeria stiedae in experimentally infected rabbits. Livestock Science, 221(August 2018), 33–38. https://doi.org/10.1016/j.livsci.2019.01.011

Alves, D. R., da Rocha, M. N., de Sousa, D. S., Oliveira, I. C. M., Marinho, M. M., de Morais, S. M., & Marinho, E. S. (2021). Virtual Screening of Natural Curcumins and Related Compounds Against SARS-CoV-2. Journal of Computational Biophysics and Chemistry, 20(01), 53–70. https://doi.org/10.1142/S2737416521500046

Biovia, D. S., Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., & Richmond, T. J. (2000). Dassault Systèmes BIOVIA, Discovery Studio Visualizer. The Journal of Chemical Physics, 17(2).

Cantini, F., Niccoli, L., Matarrese, D., Nicastri, E., Stobbione, P., & Goletti, D. (2020). Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. Journal of Infection, January. https://doi.org/10.1016/j.jinf.2020.04.017

Carey, F. A. (2011). Química orgânica, Vol. 1 (7th ed.). Bookman Editora.

Csizmadia, P. (2019). MarvinSketch and MarvinView: Molecule Applets for the World Wide Web. 1775. https://doi.org/10.3390/ecsoc-3-01775

Fehr, A. R., & Perlman, S. (2015). Coronaviruses: An overview of their replication and pathogenesis. In Coronaviruses: Methods and Protocols (pp. 1–23). Humana Press. https://doi.org/10.1007/978-1-4939-2438-7_1

Fokoue, H. H., Pinheiro, P. S. M., Fraga, C. A. M., & Sant, C. M. R. (2020). Há algo de novo no reconhecimento molecular apliaco à química medicinal? Quim. Nova, 43(1), 78–89. https://doi.org/10.21577/0100-4042.20170474

Hegyi, A., & Ziebuhr, J. (2002). Conservation of substrate specificities among coronavirus main proteases. Journal of General Virology, 83(3), 595–599. https://doi.org/10.1099/0022-1317-83-3-595

Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., You, T., Liu, X. X., Yang, X., Bai, F., Liu, H., … Yang, H. (2020). Structure-based drug design, virtual screening and high-throughput screening rapidly identify antiviral leads targeting COVID-19. BioRxiv, 2020.02.26.964882. https://doi.org/10.1101/2020.02.26.964882

Liu, X., Zhang, B., Jin, Z., Yang, H., & Rao, Z. (2020). The crystal structure of COVID-19 main protease in complex with an inhibitor N3. PDB Release, 119(February), 17–20. https://doi.org/10.2210/PDB6LU7/PDB

Mathew, D., & Hsu, W.-L. (2018). Antiviral potential of curcumin. Journal of Functional Foods, 40, 692–699. https://doi.org/10.1016/j.jff.2017.12.017

Mesel-Lemoine, M., Millet, J., Vidalain, P.-O., Law, H., Vabret, A., Lorin, V., Escriou, N., Albert, M. L., Nal, B., & Tangy, F. (2012). A Human Coronavirus Responsible for the Common Cold Massively Kills Dendritic Cells but Not Monocytes. Journal of Virology, 86(14), 7577–7587. https://doi.org/10.1128/jvi.00269-12

Moghadamtousi, S. Z., Kadir, H. A., Hassandarvish, P., Tajik, H., Abubakar, S., & Zandi, K. (2014). A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin. BioMed Research International, 1–13. https://doi.org/10.1155/2014/186864

Moriguchi, I., Hirono, S., Liu, Q., Nakagome, I., & Matsushita, Y. (1992). Simple Method of Calculating Octanol/Water Partition Coefficient. CHEMICAL & PHARMACEUTICAL BULLETIN, 40(1), 127–130. https://doi.org/10.1248/cpb.40.127

Mouncea, B. C., Cesaroa, T., Carraua, L., Vallet, T., & Vignuzzia, M. (2017). Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Research, 142, 148–157.

Nelson L., David; Cox M., M. (2014). Príncipios de Bioquímica de Lehninger (7th ed.). Artmed.

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084

Pillaiyar, T., Manickam, M., Namasivayam, V., Hayashi, Y., & Jung, S. H. (2016). An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. Journal of Medicinal Chemistry, 59(14), 6595–6628. https://doi.org/10.1021/acs.jmedchem.5b01461

Ren, Z.-L., Hu, R., Wang, Z.-W., Zhang, M., Ruan, Y.-L., Wu, Z.-Y., Wu, H.-B., Hu, X.-P., Hu, Z.-P., Ren, W., Li, L.-C., Dai, F.-F., Liu, H., & Cai, X. (2020). Epidemiologic and clinical characteristics of heart transplant recipients during the 2019 coronavirus outbreak in Wuhan, China: A descriptive survey report. The Journal of Heart and Lung Transplantation, 39(5), 412–417. https://doi.org/10.1016/j.healun.2020.03.008

Rezaeetalab, F., Mozdourian, M., Amini, M., Javidarabshahi, Z., & Akbari, F. (2020). COVID-19: A New Virus as a Potential Rapidly Spreading in the Worldwide. Journal of Cardio-Thoracic Medicine, 8(1). https://doi.org/10.22038/jctm.2020.46924.1264

Rocha, M. N. da N. da, Alves, D. R. R., Marinho, M. M. M., Morais, S. M. D. M. De, & Marinho, E. S. S. (2021). Virtual screening of citrus flavonoid tangeretin: a promising pharmacological tool for the treatment and prevention of Zika fever and COVID-19. Journal of Computational Biophysics and Chemistry, S2737416521500137. https://doi.org/10.1142/S2737416521500137

Rosa, G., & Ferreira, E. (2020). Therapies used in rheumatology with relevance to coronavirus disease 2019. Clinical and Experimental Rheumatology, 38(2), 370.

Ulrich, H., & Pillat, M. M. (2020). CD147 as a Target for COVID-19 Treatment: Suggested Effects of Azithromycin and Stem Cell Engagement. Stem Cell Reviews and Reports. https://doi.org/10.1007/s12015-020-09976-7

Vareed, S. K., Kakarala, M., Ruffin, M. T., Crowell, J. A., Normolle, D. P., Djuric, Z., & Brenner, D. E. (2008). Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiology and Prevention Biomarkers, 17(6), 1411–1417. https://doi.org/10.1158/1055-9965

Webb, B., & Sali, A. (2019). Docking Screens for Drug Discovery. In Methods in Molecular Biology (Vol. 2053). Humana. https://doi.org/10.1007/978-1-4939-9752-7

World Health Organization - WHO. (2020). Coronavirus disease (COVID-19) Situation report - 104.

World Health Organization - WHO. (2021). Coronavirus disease (COVID-19) Pandemic.

Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3

Zandi, K., Ramedani, E., Mohammadi, K., Tajbakhsh, S., Deilami, I., Rastian, Z., Fouladvand, M., Yousefi, F., & Farshadpour, F. (2010). Evaluation of antiviral activities of curcumin derivatives against HSV-1 in Vero cell line. Natural Product Communications, 5(12), 1935–1938. https://doi.org/10.1177/1934578x1000501220

Zhou, P., Yang, X.-L. Lou, Shi, Z.-L. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. Di, Liu, M. Q., Chen, Y., Shen, X. R., & Shi, Z.-L. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7

Downloads

Published

02/01/2022

How to Cite

ALVES, D. R. .; ROCHA, M. N. da .; PASSOS, C. C. O. .; MARINHO, M. M. .; MARINHO, E. S. .; MORAIS, S. M. de . Curcumins and its derivatives as potential inhibitors of New Coronavirus (COVID-19) main protease: an in silico strategy. Research, Society and Development, [S. l.], v. 11, n. 1, p. e6511124334, 2022. DOI: 10.33448/rsd-v11i1.24334. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24334. Acesso em: 3 jan. 2025.

Issue

Section

Exact and Earth Sciences