Parkinson's disease secondary to COVID-19: a systematic review

Authors

DOI:

https://doi.org/10.33448/rsd-v11i1.24397

Keywords:

Parkinson's Disease; Coronavirus Infections; Neurology.

Abstract

Objective: This study aimed to carry out a systematic review of Parkinson's Disease and its relationship with COVID-19. Methods: We used and adapted the criteria present in PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and aimed to identify peer-reviewed publications on the topic of Parkinson's disease related to COVID-19. Results: Parkinson's disease after COVID-19 is present in some cases and seems to be related to mechanisms of hyperinflammation mediated by Sars-Cov-2, especially in patients under 60 years of age. Conclusion: The occurrence of Parkinson's disease after an infection with the new coronavirus seems to be explained by the cytolytic effects of the virus, accumulation of intracellular proteins, epigenetic modifications and interactions in inflammatory pathways that cause neuronal death. COVID-19 is also associated with worsening of the symptoms in people with previously diagnosed Parkinson's Disease.

References

Andrzejewski, K., Jampolska, M., Zaremba, M., Joniec-Maciejak, I., Boguszewski, P. M., & Kaczyńska, K. (2020). Respiratory pattern and phrenic and hypoglossal nerve activity during normoxia and hypoxia in 6-OHDA-induced bilateral model of Parkinson’s disease. The Journal of Physiological Sciences, 70(1), 16. https://doi.org/10.1186/s12576-020-00743-4

Artusi, C. A., Romagnolo, A., Imbalzano, G., Marchet, A., Zibetti, M., Rizzone, M. G., & Lopiano, L. (2020). COVID-19 in Parkinson’s disease: Report on prevalence and outcome. Parkinsonism & Related Disorders, 80, 7–9. https://doi.org/10.1016/j.parkreldis.2020.09.008

Beauchamp, L. C., Finkelstein, D. I., Bush, A. I., Evans, A. H., & Barnham, K. J. (2020). Parkinsonism as a Third Wave of the COVID-19 Pandemic? Journal of Parkinson’s Disease, 10(4), 1343–1353. https://doi.org/10.3233/JPD-202211

Brundin, P., Nath, A., & Beckham, J. D. (2020). Is COVID-19 a Perfect Storm for Parkinson’s Disease? Trends in Neurosciences, 43(12), 931–933. https://doi.org/10.1016/j.tins.2020.10.009

Chaudhry, Z., Klenja, D., Janjua, N., Cami-Kobeci, G., & Ahmed, B. (2020). COVID-19 and Parkinson’s Disease: Shared Inflammatory Pathways Under Oxidative Stress. Brain Sciences, 10(11), 807. https://doi.org/10.3390/brainsci10110807

Cilia, R., Bonvegna, S., Straccia, G., Andreasi, N. G., Elia, A. E., Romito, L. M., Devigili, G., Cereda, E., & Eleopra, R. (2020). Effects of COVID ‐19 on Parkinson’s Disease Clinical Features: A Community‐Based Case‐Control Study. Movement Disorders, 35(8), 1287–1292. https://doi.org/10.1002/mds.28170

Claverie, J.-M. (2020). A Putative Role of de-Mono-ADP-Ribosylation of STAT1 by the SARS-CoV-2 Nsp3 Protein in the Cytokine Storm Syndrome of COVID-19. Viruses, 12(6), 646. https://doi.org/10.3390/v12060646

Cohen, M. E., Eichel, R., Steiner-Birmanns, B., Janah, A., Ioshpa, M., Bar-Shalom, R., Paul, J. J., Gaber, H., Skrahina, V., Bornstein, N. M., & Yahalom, G. (2020). A case of probable Parkinson’s disease after SARS-CoV-2 infection. The Lancet Neurology, 19(10), 804–805. https://doi.org/10.1016/S1474-4422(20)30305-7

Coimbra-Costa, D., Alva, N., Duran, M., Carbonell, T., & Rama, R. (2017). Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biology, 12, 216–225. https://doi.org/10.1016/j.redox.2017.02.014

Cova, I., Battista, M. E. di, Vanacore, N., Papi, C. P., Alampi, G., Rubino, A., Valente, M., Meco, G., Contri, P., Pucchio, A. di, Lacorte, E., Priori, A., Mariani, C., & Pomati, S. (2017). Validation of the Italian version of the Non Motor Symptoms Scale for Parkinson’s disease. Parkinsonism & Related Disorders, 34, 38–42. https://doi.org/10.1016/j.parkreldis.2016.10.020

Desforges, M., Coupanec, A. le, Dubeau, P., Bourgouin, A., Lajoie, L., Dubé, M., & Talbot, P. J. (2019). Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses, 12(1), 14. https://doi.org/10.3390/v12010014

Deumens, R., Blokland, A., & Prickaerts, J. (2002). Modeling Parkinson’s Disease in Rats: An Evaluation of 6-OHDA Lesions of the Nigrostriatal Pathway. Experimental Neurology, 175(2), 303–317. https://doi.org/10.1006/exnr.2002.7891

Dickman, M. S. (2001). von Economo Encephalitis. Archives of Neurology, 58(10), 1696. https://doi.org/10.1001/archneur.58.10.1696

Ding, Y., He, L., Zhang, Q., Huang, Z., Che, X., Hou, J., Wang, H., Shen, H., Qiu, L., Li, Z., Geng, J., Cai, J., Han, H., Li, X., Kang, W., Weng, D., Liang, P., & Jiang, S. (2004). Organ distribution of severe acute respiratory syndrome(SARS) associated coronavirus(SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. The Journal of Pathology, 203(2), 622–630. https://doi.org/10.1002/path.1560

Dong, S., Liu, P., Luo, Y., Cui, Y., Song, L., & Chen, Y. (2020). Pathophysiology of SARS-CoV-2 infection in patients with intracerebral hemorrhage. Aging, 12(13), 13791–13802. https://doi.org/10.18632/aging.103511

Faber, I., Brandão, P. R. P., Menegatti, F., Bispo, D. D. C., Maluf, F. B., & Cardoso, F. (2020). Coronavirus Disease 2019 and Parkinsonism: A Non‐post‐encephalitic Case. Movement Disorders, 35(10), 1721–1722. https://doi.org/10.1002/mds.28277

Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez-Martin, P., Poewe, W., Sampaio, C., Stern, M. B., Dodel, R., Dubois, B., Holloway, R., Jankovic, J., Kulisevsky, J., Lang, A. E., Lees, A., Leurgans, S., LeWitt, P. A., Nyenhuis, D., … LaPelle, N. (2008). Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Movement Disorders, 23(15), 2129–2170. https://doi.org/10.1002/mds.22340

Görlach, A., Dimova, E. Y., Petry, A., Martínez-Ruiz, A., Hernansanz-Agustín, P., Rolo, A. P., Palmeira, C. M., & Kietzmann, T. (2015). Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biology, 6, 372–385. https://doi.org/10.1016/j.redox.2015.08.016

Gu, J., Gong, E., Zhang, B., Zheng, J., Gao, Z., Zhong, Y., Zou, W., Zhan, J., Wang, S., Xie, Z., Zhuang, H., Wu, B., Zhong, H., Shao, H., Fang, W., Gao, D., Pei, F., Li, X., He, Z., … Leong, A. S.-Y. (2005). Multiple organ infection and the pathogenesis of SARS. Journal of Experimental Medicine, 202(3), 415–424. https://doi.org/10.1084/jem.20050828

Haddadi, K., Ghasemian, R., & Shafizad, M. (2020). Basal Ganglia Involvement and Altered Mental Status: A Unique Neurological Manifestation of Coronavirus Disease 2019. Cureus. https://doi.org/10.7759/cureus.7869

Hernansanz-Agustín, P., Izquierdo-Álvarez, A., Sánchez-Gómez, F. J., Ramos, E., Villa-Piña, T., Lamas, S., Bogdanova, A., & Martínez-Ruiz, A. (2014). Acute hypoxia produces a superoxide burst in cells. Free Radical Biology and Medicine, 71, 146–156. https://doi.org/10.1016/j.freeradbiomed.2014.03.011

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5

Iwata, H., Goettsch, C., Sharma, A., Ricchiuto, P., Goh, W. W. bin, Halu, A., Yamada, I., Yoshida, H., Hara, T., Wei, M., Inoue, N., Fukuda, D., Mojcher, A., Mattson, P. C., Barabási, A.-L., Boothby, M., Aikawa, E., Singh, S. A., & Aikawa, M. (2016). PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation. Nature Communications, 7(1), 12849. https://doi.org/10.1038/ncomms12849

Jang, H., Boltz, D. A., Webster, R. G., & Smeyne, R. J. (2009). Viral parkinsonism. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1792(7), 714–721. https://doi.org/10.1016/j.bbadis.2008.08.001

Jang, H., Boltz, D., McClaren, J., Pani, A. K., Smeyne, M., Korff, A., Webster, R., & Smeyne, R. J. (2012). Inflammatory Effects of Highly Pathogenic H5N1 Influenza Virus Infection in the CNS of Mice. Journal of Neuroscience, 32(5), 1545–1559. https://doi.org/10.1523/JNEUROSCI.5123-11.2012

Kim, J., Choi, D., Jeong, H., Kim, J., Kim, D. W., Choi, S. Y., Park, S.-M., Suh, Y. H., Jou, I., & Joe, E.-H. (2013). DJ-1 facilitates the interaction between STAT1 and its phosphatase, SHP-1, in brain microglia and astrocytes: A novel anti-inflammatory function of DJ-1. Neurobiology of Disease, 60, 1–10. https://doi.org/10.1016/j.nbd.2013.08.007

Marreiros, R., Müller-Schiffmann, A., Trossbach, S. v, Prikulis, I., Hänsch, S., Weidtkamp-Peters, S., Moreira, A. R., Sahu, S., Soloviev, I., Selvarajah, S., Lingappa, V. R., & Korth, C. (2020). Disruption of cellular proteostasis by H1N1 influenza A virus causes α-synuclein aggregation. Proceedings of the National Academy of Sciences, 117(12), 6741–6751. https://doi.org/10.1073/pnas.1906466117

Martínez-Martín, P., Forjaz, M. J., Cubo, E., Frades, B., & de Pedro Cuesta, J. (2006). Global versus factor-related impression of severity in Parkinson’s disease: A new clinimetric index (CISI-PD). Movement Disorders, 21(2), 208–214. https://doi.org/10.1002/mds.20697

Méndez-Guerrero, A., Laespada-García, M. I., Gómez-Grande, A., Ruiz-Ortiz, M., Blanco-Palmero, V. A., Azcarate-Diaz, F. J., Rábano-Suárez, P., Álvarez-Torres, E., de Fuenmayor-Fernández de la Hoz, C. P., Pérez, D. V., Rodríguez-Montalbán, R., Pérez-Rivilla, A., Catalán, J. S., Ramos-González, A., & de la Aleja, J. G. (2020). Acute hypokinetic-rigid syndrome following SARS-CoV-2 infection. Neurology, 95(15), e2109–e2118. https://doi.org/10.1212/WNL.0000000000010282

Merello, M., Bhatia, K. P., & Obeso, J. A. (2021). SARS-CoV-2 and the risk of Parkinson’s disease: facts and fantasy. The Lancet Neurology, 20(2), 94–95. https://doi.org/10.1016/S1474-4422(20)30442-7

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2010). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. International Journal of Surgery, 8(5), 336–341. https://doi.org/10.1016/j.ijsu.2010.02.007

Muldoon, L. L., Alvarez, J. I., Begley, D. J., Boado, R. J., del Zoppo, G. J., Doolittle, N. D., Engelhardt, B., Hallenbeck, J. M., Lonser, R. R., Ohlfest, J. R., Prat, A., Scarpa, M., Smeyne, R. J., Drewes, L. R., & Neuwelt, E. A. (2013). Immunologic Privilege in the Central Nervous System and the Blood–Brain Barrier. Journal of Cerebral Blood Flow & Metabolism, 33(1), 13–21. https://doi.org/10.1038/jcbfm.2012.153

Netland, J., Meyerholz, D. K., Moore, S., Cassell, M., & Perlman, S. (2008). Severe Acute Respiratory Syndrome Coronavirus Infection Causes Neuronal Death in the Absence of Encephalitis in Mice Transgenic for Human ACE2. Journal of Virology, 82(15), 7264–7275. https://doi.org/10.1128/JVI.00737-08

Niizuma, K., Endo, H., & Chan, P. H. (2009). Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. Journal of Neurochemistry, 109, 133–138. https://doi.org/10.1111/j.1471-4159.2009.05897.x

Obermeier, B., Daneman, R., & Ransohoff, R. M. (2013). Development, maintenance and disruption of the blood-brain barrier. Nature Medicine, 19(12), 1584–1596. https://doi.org/10.1038/nm.3407

Pagano, G., Niccolini, F., & Politis, M. (2016). Imaging in Parkinson’s disease. Clinical Medicine, 16(4), 371–375. https://doi.org/10.7861/clinmedicine.16-4-371

Paniz‐Mondolfi, A., Bryce, C., Grimes, Z., Gordon, R. E., Reidy, J., Lednicky, J., Sordillo, E. M., & Fowkes, M. (2020). Central nervous system involvement by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2). Journal of Medical Virology, 92(7), 699–702. https://doi.org/10.1002/jmv.25915

Pavel, A., Murray, D. K., & Stoessl, A. J. (2020). COVID-19 and selective vulnerability to Parkinson’s disease. The Lancet Neurology, 19(9), 719. https://doi.org/10.1016/S1474-4422(20)30269-6

Pilotto, A., Odolini, S., Masciocchi, S., Comelli, A., Volonghi, I., Gazzina, S., Nocivelli, S., Pezzini, A., Focà, E., Caruso, A., Leonardi, M., Pasolini, M. P., Gasparotti, R., Castelli, F., Ashton, N. J., Blennow, K., Zetterberg, H., & Padovani, A. (2020). Steroid‐Responsive Encephalitis in Coronavirus Disease 2019. Annals of Neurology, 88(2), 423–427. https://doi.org/10.1002/ana.25783

Politis, M. (2014). Neuroimaging in Parkinson disease: from research setting to clinical practice. Nature Reviews Neurology, 10(12), 708–722. https://doi.org/10.1038/nrneurol.2014.205

Prieto-Lloret, J., Donnelly, D. F., Rico, A. J., Moratalla, R., González, C., & Rigual, R. J. (2007). Hypoxia transduction by carotid body chemoreceptors in mice lacking dopamine D 2 receptors. Journal of Applied Physiology, 103(4), 1269–1275. https://doi.org/10.1152/japplphysiol.00391.2007

Rábano-Suárez, P., Bermejo-Guerrero, L., Méndez-Guerrero, A., Parra-Serrano, J., Toledo-Alfocea, D., Sánchez-Tejerina, D., Santos-Fernández, T., Folgueira-López, M. D., Gutiérrez-Gutiérrez, J., Ayuso-García, B., de la Aleja, J. G., & Benito-León, J. (2020). Generalized myoclonus in COVID-19. Neurology, 95(6), e767–e772. https://doi.org/10.1212/WNL.0000000000009829

Ramani, A., Müller, L., Ostermann, P. N., Gabriel, E., Abida‐Islam, P., Müller‐Schiffmann, A., Mariappan, A., Goureau, O., Gruell, H., Walker, A., Andrée, M., Hauka, S., Houwaart, T., Dilthey, A., Wohlgemuth, K., Omran, H., Klein, F., Wieczorek, D., Adams, O., … Gopalakrishnan, J. (2020). SARS ‐CoV‐2 targets neurons of 3D human brain organoids. The EMBO Journal, 39(20). https://doi.org/10.15252/embj.2020106230

Sadasivan, S., Zanin, M., O’Brien, K., Schultz-Cherry, S., & Smeyne, R. J. (2015). Induction of Microglia Activation after Infection with the Non-Neurotropic A/CA/04/2009 H1N1 Influenza Virus. PLOS ONE, 10(4), e0124047. https://doi.org/10.1371/journal.pone.0124047

Sulzer, D. (2007). Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends in Neurosciences, 30(5), 244–250. https://doi.org/10.1016/j.tins.2007.03.009

Sulzer, D., Antonini, A., Leta, V., Nordvig, A., Smeyne, R. J., Goldman, J. E., Al-Dalahmah, O., Zecca, L., Sette, A., Bubacco, L., Meucci, O., Moro, E., Harms, A. S., Xu, Y., Fahn, S., & Chaudhuri, K. R. (2020). COVID-19 and possible links with Parkinson’s disease and parkinsonism: from bench to bedside. Npj Parkinson’s Disease, 6(1), 18. https://doi.org/10.1038/s41531-020-00123-0

Takahashi, M., & Yamada, T. (1999). Viral etiology for Parkinson’s disease–a possible role of influenza A virus infection. Japanese Journal of Infectious Diseases, 52(3), 89–98.

Texakalidis, P., Giannopoulos, S., Jonnalagadda, A. K., Kokkinidis, D. G., Machinis, T., Reavey-Cantwell, J., Armstrong, E. J., & Jabbour, P. (2018). Carotid Artery Endarterectomy versus Carotid Artery Stenting for Restenosis After Carotid Artery Endarterectomy: A Systematic Review and Meta-Analysis. World Neurosurgery, 115, 421-429.e1. https://doi.org/10.1016/j.wneu.2018.02.196

Texakalidis, P., Lu, V. M., Yolcu, Y., Kerezoudis, P., Alvi, M. A., Parney, I. F., Fogelson, J. L., & Bydon, M. (2019). Impact of Powdered Vancomycin on Preventing Surgical Site Infections in Neurosurgery: A Systematic Review and Meta-analysis. Neurosurgery, 84(3), 569–580. https://doi.org/10.1093/neuros/nyy288

Vavougios, G. D. (2020). A data-driven hypothesis on the epigenetic dysregulation of host metabolism by SARS coronaviral infection: Potential implications for the SARS-CoV-2 modus operandi. Medical Hypotheses, 140, 109759. https://doi.org/10.1016/j.mehy.2020.109759

Vavougios, G. D. (2021). Human coronaviruses in idiopathic Parkinson’s disease: Implications of SARS-CoV-2’s modulation of the host’s transcriptome. Infection, Genetics and Evolution, 89, 104733. https://doi.org/10.1016/j.meegid.2021.104733

Wiersinga, W. J., Rhodes, A., Cheng, A. C., Peacock, S. J., & Prescott, H. C. (2020). Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19). JAMA, 324(8), 782. https://doi.org/10.1001/jama.2020.12839

Xu, J., Zhong, S., Liu, J., Li, L., Li, Y., Wu, X., Li, Z., Deng, P., Zhang, J., Zhong, N., Ding, Y., & Jiang, Y. (2005). Detection of Severe Acute Respiratory Syndrome Coronavirus in the Brain: Potential Role of the Chemokine Mig in Pathogenesis. Clinical Infectious Diseases, 41(8), 1089–1096. https://doi.org/10.1086/444461

Zhang, Q., Schultz, J. L., Aldridge, G. M., Simmering, J. E., & Narayanan, N. S. (2020). Coronavirus Disease 201 9 Case Fatality and Parkinson’s Disease. Movement Disorders, 35(11), 1914–1915. https://doi.org/10.1002/mds.28325

Zhang, Y., Mao, D., Roswit, W. T., Jin, X., Patel, A. C., Patel, D. A., Agapov, E., Wang, Z., Tidwell, R. M., Atkinson, J. J., Huang, G., McCarthy, R., Yu, J., Yun, N. E., Paessler, S., Lawson, T. G., Omattage, N. S., Brett, T. J., & Holtzman, M. J. (2015). PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection. Nature Immunology, 16(12), 1215–1227. https://doi.org/10.1038/ni.3279

Published

13/01/2022

How to Cite

HAMOY, M.; BRAGA, G. H. R.; CHAVES, J. V. S. .; MAIA, A. C. S. .; CABRAL, D. A. C.; CAMPOS, F. M. S. .; MEDEIROS, J. P. do V. .; CABRAL, L. G. C. .; OLIVEIRA, B. P. dos S. .; BRAGA, J. P. .; DE MELLO, V. J.; PASCHOAL, E. H. A. . Parkinson’s disease secondary to COVID-19: a systematic review. Research, Society and Development, [S. l.], v. 11, n. 1, p. e50711124397, 2022. DOI: 10.33448/rsd-v11i1.24397. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24397. Acesso em: 21 dec. 2024.

Issue

Section

Review Article