Strategies for the reduction of Campylobacter thermotolerants in broilers

Authors

  • Luiza Toffano Seidel Calazans Programa de Pós-graduação em Ciência Animal Centro de Pesquisa em Alimentos Escola de Veterinária e Zootecnia Universidade Federal de Goiás, Brasil https://orcid.org/0000-0002-4188-1241
  • Maria Auxiliadora Andrade Programa de Pós-graduação em Ciência Animal Departamentto de Medicina Veterinária Preventiva Escola de Veterinária e Zootecnia Universidade Federal de Goiás, Brasil https://orcid.org/0000-0002-8373-1671
  • Bruna Aparecida Souza Machado Centro Universitário SENAI / CIMATEC Serviço Nacional de Aprendizagem Industrial – SENAI Instituto de Tecnologias da Saúde (ITS CIMATEC) Salvador, Bahia https://orcid.org/0000-0003-1655-0325
  • Cíntia Silva Minafra e Rezende Programa de Pós-graduação em Ciência Animal Centro de Pesquisa em Alimentos Escola de Veterinária e Zootecnia Universidade Federal de Goiás, Brasil https://orcid.org/0000-0002-0727-5651

DOI:

https://doi.org/10.33448/rsd-v9i3.2440

Keywords:

Poultry; Biosecurity; Campylobacter.

Abstract

Thermotolerant Campylobacter is related to a group of foodborne pathogens that are currently considered to be the main causes of globally occurring gastrointestinal diseases with high frequency of antimicrobial resistance. Therefore, this review aims to discuss alternatives for the control and reduction of microorganism in broiler, like biosecurity actions and nutritional strategies. Thus, it is possible to list feasible measures relating to the overall management plan for chickens from housing to transport to slaughterhouses, as well as biological and / or chemical components associated with the broiler’s feed so that they minimize contamination and, as a result, the spread of the bacteria during slaughter operations, the transmission of pathogens by food and the risk to public health.

References

Allain, V., Chemaly, M., Laisney, M. J., Rouxel, S., Quesne, S., & Le Bouquin, S. (2014). Prevalence of and risk factors for Campylobacter colonisation in broiler flocks at the end of the rearing period in France. Br Poult Sci, 55(4), 452-459.

Allen, V. M., Weaver, H., Ridley, A. M., Harris, J. A., Sharma, M., Emery, J., et al. (2008). Sources and spread of thermophilic Campylobacter spp. during partial depopulation of broiler chicken flocks. J Food Prot, 71(2), 264-270.

Arsi, K., Donoghue, A. M., Venkitanarayanan, K., Kollanoor-Johny, A., Fanatico, A. C., Blore, P. J., et al. (2014). The Efficacy of the natural plant extracts, thymol and carvacrol against campylobacter colonization in broiler chickens. Journal of Food Safety, 34(4), 321-325.

Baffoni, L., Gaggia, F., Garofolo, G., Di Serafino, G., Buglione, E., Di Giannatale, E., et al. (2017). Evidence of Campylobacter jejuni reduction in broilers with early synbiotic administration. Int J Food Microbiol, 251, 41-47.

Bull, S. A., Allen, V. M., Domingue, G., Jørgensen, F., Frost, J. A., Ure, R., et al. (2006). Sources of Campylobacter spp. Colonizing Housed Broiler Flocks during Rearing Appl Environ Microbiol (Vol. 72, pp. 645-652).

Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods--a review. Int J Food Microbiol, 94(3), 223-253.

CDC. (2017). Foodborne Diseases Active Surveillance Network (FoodNet): FoodNet 2015 Surveillance Report (Final Data). Atlanta, Georgia: U.S. Department of Health and Human Services.

Chaveerach, P., Keuzenkamp, D. A., Lipman, L. J., & Van Knapen, F. (2004). Effect of organic acids in drinking water for young broilers on Campylobacter infection, volatile fatty acid production, gut microflora and histological cell changes. Poult Sci, 83(3), 330-334.

Dec, M., Nowaczek, A., Urban-Chmiel, R., Stepien-Pysniak, D., & Wernicki, A. (2018). Probiotic potential of Lactobacillus isolates of chicken origin with anti-Campylobacter activity. J Vet Med Sci, 80(8), 1195-1203.

DEFRA. (2009). Code of Practice for the prevention and control of rodent infestations on poultry farms. London.

Dhillon, A. S., Shivaprasad, H. L., Schaberg, D., Wier, F., Weber, S., & Bandli, D. (2006). Campylobacter jejuni infection in broiler chickens. Avian Dis, 50(1), 55-58.

Diaz-Sanchez, S., D'Souza, D., Biswas, D., & Hanning, I. (2015). Botanical alternatives to antibiotics for use in organic poultry production. Poult Sci, 94(6), 1419-1430.

EFSA. (2017). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA Journal, 13 - 20.

Ellis-Iversen, J., Ridley, A., Morris, V., Sowa, A., Harris, J., Atterbury, R., et al. (2012). Persistent environmental reservoirs on farms as risk factors for Campylobacter in commercial poultry. Epidemiol Infect, 140(5), 916-924.

Georgiev, M., Beauvais, W., & Guitian, J. (2017). Effect of enhanced biosecurity and selected on-farm factors on Campylobacter colonization of chicken broilers. Epidemiol Infect, 145(3), 553-567.

Hald, B., Sommer, H. M., & Skovgård, H. (2007). Use of Fly Screens to Reduce Campylobacter spp. Introduction in Broiler Houses Emerg Infect Dis (Vol. 13, pp. 1951-1953).

Hansson, I., Sandberg, M., Habib, I., Lowman, R., & Engvall, E. O. (2018). Knowledge gaps in control of Campylobacter for prevention of campylobacteriosis. Transbound Emerg Dis, 65 Suppl 1, 30-48.

Hilmarsson, H., Thormar, H., Thrainsson, J. H., Gunnarsson, E., & Dadadottir, S. (2006). Effect of glycerol monocaprate (monocaprin) on broiler chickens: an attempt at reducing intestinal Campylobacter infection. Poult Sci, 85(4), 588-592.

Hofreuter, D. (2014). Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni. Front Cell Infect Microbiol, 4, 137.

Holck, A. L., Axelsson, L., Huhne, K., & Krockel, L. (1994). Purification and cloning of sakacin 674, a bacteriocin from Lactobacillus sake Lb674. FEMS Microbiol Lett, 115(2-3), 143-149.

Kaakoush, N. O., Castaño-Rodríguez, N., Mitchell, H. M., & Man, S. M. (2015). Global Epidemiology of Campylobacter Infection. Clin Microbiol Rev, 28(3), 687-720.

Kelly, C., Gundogdu, O., Pircalabioru, G., Cean, A., Scates, P., Linton, M., et al. (2017). The In Vitro and In Vivo Effect of Carvacrol in Preventing Campylobacter Infection, Colonization and in Improving Productivity of Chicken Broilers. Foodborne Pathog Dis, 14(6), 341-349.

Kollanoor Johny, A., Darre, M. J., Donoghue, A. M., Donoghue, D. J., & Venkitanarayanan, K. (2010). Antibacterial effect of trans-cinnamaldehyde, eugenol, carvacrol, and thymol on Salmonella Enteritidis and Campylobacter jejuni in chicken cecal contents in vitro. The Journal of Applied Poultry Research, 19(3), 237-244.

Lambert, R. J., Skandamis, P. N., Coote, P. J., & Nychas, G. J. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol, 91(3), 453-462.

Letnicka, A., Karaffova, V., Levkut, M., Revajova, V., & Herich, R. (2017). Influence of oral application of Enterococcus faecium AL41 on TGF-beta4 and IL-17 expression and immunocompetent cell distribution in chickens challenged with Campylobacter jejuni. Acta Vet Hung, 65(3), 317-326.

Messaoudi, S., Kergourlay, G., Dalgalarrondo, M., Choiset, Y., Ferchichi, M., Prevost, H., et al. (2012). Purification and characterization of a new bacteriocin active against Campylobacter produced by Lactobacillus salivarius SMXD51. Food Microbiol, 32(1), 129-134.

Messens, W., Herman, L., De Zutter, L., & Heyndrickx, M. (2009). Multiple typing for the epidemiological study of contamination of broilers with thermotolerant Campylobacter. Vet Microbiol, 138(1-2), 120-131.

Meunier, M., Guyard-Nicodeme, M., Dory, D., & Chemaly, M. (2016). Control strategies against Campylobacter at the poultry production level: biosecurity measures, feed additives and vaccination. J Appl Microbiol, 120(5), 1139-1173.

Michael, D. P., & Matthew, T. T. (2007). Chemical Preservatives and Natural Antimicrobial Compounds Food Microbiology: Fundamentals and Frontiers (3 ed., pp. 713-745).

Navarro, M., Stanley, R., Cusack, A., & Sultanbawa, Y. (2015). Combinations of plant-derived compounds against Campylobacter in vitro. The Journal of Applied Poultry Research, 24(3), 352-363.

Newell, D. G., Elvers, K. T., Dopfer, D., Hansson, I., Jones, P., James, S., et al. (2011). Biosecurity-based interventions and strategies to reduce Campylobacter spp. on poultry farms. Appl Environ Microbiol, 77(24), 8605-8614.

Nichols, G. L. (2005). Fly transmission of Campylobacter. Emerg Infect Dis, 11(3), 361-364.

OIE - World Organization for Animal Health. (2017). Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Available from: http://www.oie.int/manual-of-diagnostic-tests-and-vaccines-for-terrestrial-animals/.

Oporto, B., Esteban, J. I., Aduriz, G., Juste, R. A., & Hurtado, A. (2007). Prevalence and strain diversity of thermophilic campylobacters in cattle, sheep and swine farms. J Appl Microbiol, 103(4), 977-984.

Patriarchi, A., Fox, A., Maunsell, B., Fanning, S., & Bolton, D. (2011). Molecular characterization and environmental mapping of Campylobacter isolates in a subset of intensive poultry flocks in Ireland. Foodborne Pathog Dis, 8(1), 99-108.

Ricke, S. C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci, 82(4), 632-639.

Ridley, A., Morris, V., Gittins, J., Cawthraw, S., Harris, J., Edge, S., et al. (2011). Potential sources of Campylobacter infection on chicken farms: contamination and control of broiler-harvesting equipment, vehicles and personnel. J Appl Microbiol, 111(1), 233-244.

Robyn, J., Rasschaert, G., Hermans, D., Pasmans, F., & Heyndrickx, M. (2013). In vivo broiler experiments to assess anti-Campylobacter jejuni activity of a live Enterococcus faecalis strain. Poult Sci, 92(1), 265-271.

Robyn, J., Rasschaert, G., Pasmans, F., & Heyndrickx, M. (2015). Thermotolerant Campylobacter during Broiler Rearing: Risk Factors and Intervention Comprehensive Reviews in Food Science and Food Safety, 14.

Rosenquist, H., Nielsen, N. L., Sommer, H. M., Norrung, B., & Christensen, B. B. (2003). Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens. Int J Food Microbiol, 83(1), 87-103.

Santini, C., Baffoni, L., Gaggia, F., Granata, M., Gasbarri, R., Di Gioia, D., et al. (2010). Characterization of probiotic strains: an application as feed additives in poultry against Campylobacter jejuni. Int J Food Microbiol, 141 Suppl 1, S98-108.

Shane, S. M., Montrose, M. S., & Harrington, K. S. (1985). Transmission of Campylobacter jejuni by the housefly (Musca domestica). Avian Dis, 29(2), 384-391.

Sibanda, N., McKenna, A., Richmond, A., Ricke, S. C., Callaway, T., Stratakos, A. C., et al. (2018). A Review of the Effect of Management Practices on Campylobacter Prevalence in Poultry Farms. Front Microbiol, 9, 2002.

Slader, J., Domingue, G., Jorgensen, F., McAlpine, K., Owen, R. J., Bolton, F. J., et al. (2002). Impact of transport crate reuse and of catching and processing on Campylobacter and Salmonella contamination of broiler chickens. Appl Environ Microbiol, 68(2), 713-719.

Smialek, M., Burchardt, S., & Koncicki, A. (2018). The influence of probiotic supplementation in broiler chickens on population and carcass contamination with Campylobacter spp. - Field study. Res Vet Sci, 118, 312-316.

Solis de Los Santos, F., Donoghue, A. M., Venkitanarayanan, K., Dirain, M. L., Reyes-Herrera, I., Blore, P. J., et al. (2008)a. Caprylic acid supplemented in feed reduces enteric Campylobacter jejuni colonization in ten-day-old broiler chickens. Poult Sci, 87(4), 800-804.

Solis de los Santos, F., Donoghue, A. M., Venkitanarayanan, K., Reyes-Herrera, I., Metcalf, J. H., Dirain, M. L., et al. (2008)b. Therapeutic supplementation of caprylic acid in feed reduces Campylobacter jejuni colonization in broiler chicks. Appl Environ Microbiol, 74(14), 4564-4566.

Stringfellow, K., Caldwell, D., Lee, J., Mohnl, M., Beltran, R., Schatzmayr, G., et al. (2011). Evaluation of probiotic administration on the immune response of coccidiosis-vaccinated broilers. Poult Sci, 90(8), 1652-1658.

Svetoch, E. A., Eruslanov, B. V., Levchuk, V. P., Perelygin, V. V., Mitsevich, E. V., Mitsevich, I. P., et al. (2011). Isolation of Lactobacillus salivarius 1077 (NRRL B-50053) and characterization of its bacteriocin, including the antimicrobial activity spectrum. Appl Environ Microbiol, 77(8), 2749-2754.

Svetoch, E. A., Eruslanov, B. V., Perelygin, V. V., Mitsevich, E. V., Mitsevich, I. P., Borzenkov, V. N., et al. (2008). Diverse antimicrobial killing by Enterococcus faecium E 50-52 bacteriocin. J Agric Food Chem, 56(6), 1942-1948.

Svetoch, E. A., & Stern, N. J. (2010). Bacteriocins to control Campylobacter spp. in poultry--A review. Poult Sci, 89(8), 1763-1768.

Svetoch, E. A., Stern, N. J., Eruslanov, B. V., Kovalev, Y. N., Volodina, L. I., Perelygin, V. V., et al. (2005). Isolation of Bacillus circulans and Paenibacillus polymyxa strains inhibitory to Campylobacter jejuni and characterization of associated bacteriocins. J Food Prot, 68(1), 11-17.

Thompson, J. L., & Hinton, M. (1996). Effect of short-chain fatty acids on the size of enteric bacteria. Lett Appl Microbiol, 22(6), 408-412.

Thormar, H., Hilmarsson, H., & Bergsson, G. (2006). Stable concentrated emulsions of the 1-monoglyceride of capric acid (monocaprin) with microbicidal activities against the food-borne bacteria Campylobacter jejuni, Salmonella spp., and Escherichia coli. Appl Environ Microbiol, 72(1), 522-526.

Van Deun, K., Haesebrouck, F., Van Immerseel, F., Ducatelle, R., & Pasmans, F. (2008). Short-chain fatty acids and L-lactate as feed additives to control Campylobacter jejuni infections in broilers. Avian Pathol, 37(4), 379-383.

Van Immerseel, F., De Buck, J., Boyen, F., Bohez, L., Pasmans, F., Volf, J., et al. (2004). Medium-chain fatty acids decrease colonization and invasion through hilA suppression shortly after infection of chickens with Salmonella enterica serovar Enteritidis. Appl Environ Microbiol, 70(6), 3582-3587.

Walugembe, M., Hsieh, J. C., Koszewski, N. J., Lamont, S. J., Persia, M. E., & Rothschild, M. F. (2015). Effects of dietary fiber on cecal short-chain fatty acid and cecal microbiota of broiler and laying-hen chicks. Poult Sci, 94(10), 2351-2359.

WHO. (2001). WHO Consultation on the Increasing Incidence of Human Campylobacteriosis. The increasing incidence of human campylobacteriosis report and proceedings of a WHO consultation of experts, Copenhagen, Denmark, 21-25 November 2000. Retrieved from http://apps.who.int/iris/handle/10665/67767.

WHO. (2018). Campylobacter - Key facts. Retrieved 23-10-2018

Williams, L. K., Sait, L. C., Trantham, E. K., Cogan, T. A., & Humphrey, T. J. (2013). Campylobacter infection has different outcomes in fast- and slow-growing broiler chickens. Avian Dis, 57(2), 238-241.

Willis, W. L., & Reid, L. (2008). Investigating the effects of dietary probiotic feeding regimens on broiler chicken production and Campylobacter jejuni presence. Poult Sci, 87(4), 606-611.

Yang, Y., Iji, P. A., & Choct, M. (2009). Dietary modulation of gut microflora in broiler chickens: a review of the role of six kinds of alternatives to in-feed antibiotics. World's Poultry Science Journal, 65, 97-114.

Published

18/02/2020

How to Cite

CALAZANS, L. T. S.; ANDRADE, M. A.; MACHADO, B. A. S.; REZENDE, C. S. M. e. Strategies for the reduction of Campylobacter thermotolerants in broilers. Research, Society and Development, [S. l.], v. 9, n. 3, p. e75932440, 2020. DOI: 10.33448/rsd-v9i3.2440. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/2440. Acesso em: 2 jan. 2025.

Issue

Section

Review Article