Physicochemical characterization of milk fermented by Lactobacillus helveticus added with hibiscus extract during storage

Authors

DOI:

https://doi.org/10.33448/rsd-v11i1.24475

Keywords:

DPPH; FRAP; Proximal Composition; S. thermophilus.

Abstract

This work proposed to develop a milk fermented by Lactobacillus helveticus (LH) or associated with a culture of Streptococcus thermophilus (LHST) added with hibiscus extract and to evaluate the antioxidant activity and growth evolution of lactic cultures during storage under refrigeration at 4 ± 1ºC. Fermented milk received free form hibiscus extract (LHExL and LHSTExL) or encapsulated with PVP and Tween 80 (LHExE and LHSTexE). Antioxidant activity (DPPH and FRAP) was evaluated at 1, 15 and 30 days. The results showed that the titratable acidity content was lower after fermentation. The viability of the lactic acid bacteria was satisfactory, which met the legal requirements and remained stable up to 30 days of storage for both fermented milk (LH and LHST). The antioxidant activity against the DPPH radical was greater than 80%, but it did not show conclusive results regarding the interaction of lactic cultures and the different forms of application of the hibiscus extract. However, LH showed greater antioxidant activity by the FRAP method when associated with hibiscus extract encapsulated in the initial time. This analysis allowed to observe that the association of hibiscus extract regardless of the form conveyed to fermented milk increased the antioxidant activity by the FRAP method and this remained stable over the storage time. Therefore, the study allowed to conclude that the fermented milk associated with the hibiscus extract contributed to the increase in antioxidant activity and remained stable over the storage time.

References

ABREU, Bruna Barbosa et al. (2019). Composição centesimal, compostos bioativos e atividade antioxidante em cálice de hibisco (Hibiscus sabdariffa L.). Journal Interdisciplinar de Biociências, [s. l.], 4 (1), p. 1.

Antigo, J. L. D.; Silva, J. M.; Bergamasco, R. C.; Madrona, G. S. (2020). Microencapsulation of beet dye (Beta vulgaris L.) using maltodextrin and xanthan gum as encapsulant agents and application in yogurt. Research, Society and Development, 9(12), e14091210896. https://doi.org/10.33448/rsd-v9i12.10896.

Bezerra, A. S., Stankievicz, S. A., Kaufmann, A. I., Machado, A. A. R., & Uczay, J. (2017). Composição nutricional e atividade antioxidante de plantas alimentícias não convencionais da região sul do Brasil. Arquivos Brasileiros de Alimentação, 2(3), p. 182–188.

Borgonovi, T. F. (2018). Biocompostos das polpas de maracujá e de buriti: caracterização e aplicação em leite [Dissertação (Mestrado)]. Universidade Estadual Paulista “Júlio de Mesquita Filho”, Instituto de Biociências, Letras e Ciências Exatas.

Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Instrução normativa n.46 (2007). Aprova o Regulamento Técnico de Identidade e Qualidade de Leites Fermentados. Diário Oficial da União, Seção 1, p. 4.

Brasil. Ministério da Saúde. Resolução RDC n. 269 (2005). Regulamento Técnico sobre ingestão diária recomendada (IDR) de proteína, vitaminas e minerais. Diário Oficial da União, Brasília.

Capitani, C., Hauschild, F. A. D., Friedrich, C. J., Lehn, D. N., & Souza, C. F. V. de. (2014). Caracterização de iogurtes elaborados com probióticos e fibra solúvel. Revista Brasileira de Tecnologia Agroindustrial, 08(02), p. 1285–1300. https://doi.org/10.3895/S1981-3686201400020

El-Sayed, M. I., Awad, S., & Abou-Soliman, N. H. I. (2021). Improving the Antioxidant Properties of Fermented Camel Milk Using Some Strains of Lactobacillus. Food and Nutrition Sciences, 12, p. 352–371. https://doi.org/10.4236/fns.2021.124028

Elfahri, K. R., Vasiljevic, T., Yeager, T., & Donkor, O. N. (2016). Anti-colon cancer and antioxidant activities of bovine skim milk fermented by selected Lactobacillus helveticus strains. Journal of Dairy Science, 99(1), p. 31–40. https://doi.org/10.3168/jds.2015-10160

Gasparin, K. (2015). Desenvolvimento de queijo minas curado com adição de Enterococcus faecium EF 1, Lactobacillus helveticus LH 13 e extrato de cúrcuma (Curcuma longa L.) [Dissertação (Mestrado)]. Universidade Estadual de Londrina, Centro de Ciências Agrárias.

Gösta Bylund, M. S. (2015). Dairy processing handbook (3o ed). Tetra Pak Processing Systems AB.

Hashemi, S. M. B., Gholamhosseinpour, A., & Abedi, E. (2021). Biopreservative potential of Lactobacillus strains in yoghurt dessert. Journal of Food Measurement and Characterization, 15, p. 1634–1643. https://doi.org/10.1007/s11694-020-00755-z

Instituto Adolfo Lutz. (2004). Métodos Físico-Químicos para Análise de Alimentos (4o ed). São Paulo: Instituto Adolfo Lutz, 1020 p.

Jung, E., & Joo, N. (2013). Roselle (Hibiscus sabdariffa l.) and soybean oil effects on quality characteristics of pork patties studied by response surface methodology. Meat Science, 94, p. 391–401. https://doi.org/10.1016/j.meatsci.2013.02.008

Kabir, M. R., Hasan, M. M., Islam, M. R., Haque, A. R., & Hasan, S. M. K. (2021). Formulation of yogurt with banana peel extracts to enhance storability and bioactive properties. Journal of Food Processing and Preservation, 45, p. 1–10. https://doi.org/10.1111/jfpp.15191

Namdari, A., & Nejati, F. (2016). Development of antioxidant activity during milk fermentation by wild isolates of Lactobacillus helveticus. Applied Food Biotechnology, 3(3), p. 178–186.

Pires, J., Torres, P. B., Santos, D. Y. A. C. dos, & Chow, F. (2017). Ensaio em microplaca do potencial antioxidante através do método de sequestro do radical livre DPPH para extratos de algas. Instituto de Biociências, Universidade de São Paulo, p. 6.

Rasheed, D. M., Porzel, A., Frolov, A., El Seedi, H. R., Wessjohann, L. A., & Farag, M. A. (2018). Comparative analysis of Hibiscus sabdariffa (roselle) hot and cold extracts in respect to their potential for α-glucosidase inhibition. Food Chemistry, 250, p. 236–244. https://doi.org/10.1016/j.foodchem.2018.01.020

Sah, B. N. P., Vasiljevic, T., McKechnie, S., & Donkor, O. N. (2014). Effect of probiotics on antioxidant and antimutagenic activities of crude peptide extract from yogurt. Food Chemistry, 156, p. 264–270. https://doi.org/10.1016/j.foodchem.2014.01.105

Silva, A. B. da, Wiest, J. M., & Carvalho, H. H. C. (2016). Compostos químicos e atividade antioxidante analisados em Hibiscus rosa-sinensis L. (mimo-de-vênus ) e Hibiscus syriacus L. (hibisco-da-síria). Brazilian Journal of Food Technology, 19, p.1–9. https://doi.org/10.1590/1981-6723.7415

Tamime, A. (2006). Fermented Milk. (1. ed). Oxford: Blackwell Science Ltda, 262 p.

Urrea-Victoria, V., Pires, J., Torres, P. B., Santos, D. Y. A. C. dos, & Chow, F. (2016). Ensaio antioxidante em microplaca do poder de redução do ferro ( FRAP) para extratos de algas. Instituto de Biociências, Universidade de São Paulo, p. 1–6.

Vanegas-Azuero, A. M., & Gutiérrez, L. F. (2018). Physicochemical and sensory properties of yogurts containing sacha inchi (Plukenetia volubilis L.) seeds and β-glucans from Ganoderma lucidum. Journal of Dairy Science, 101, p. 1020–1033. https://doi.org/10.3168/jds.2017-13235

Xiao, J., Mao, F., Yang, F., Zhao, Y., Zhang, C., & Yamamoto, K. (2011). Interaction of dietary polyphenols with bovine milk proteins: Molecular structure-affinity relationship and influencing bioactivity aspects. Molecular Nutrition and Food Research, 55, p. 1637–1645. https://doi.org/10.1002/mnfr.201100280

Published

04/01/2022

How to Cite

MORAES, M. L. de; MOREIRA, T. F. M.; RODRIGUES, V. C. .; LEIMANN, F. V. .; KATSUDA, M. S. . Physicochemical characterization of milk fermented by Lactobacillus helveticus added with hibiscus extract during storage. Research, Society and Development, [S. l.], v. 11, n. 1, p. e18211124475, 2022. DOI: 10.33448/rsd-v11i1.24475. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24475. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences