Degradative succession of the insects in small rodents in subtropical systems
DOI:
https://doi.org/10.33448/rsd-v11i1.24558Keywords:
Forensic entomology; Carcass decomposition; Insect families; Mus musculus.Abstract
We evaluated the insect succession in small rodent carcasses on the soil extracts (surface vs. buried) in two areas (riparian vs. agricultural) and two seasonal periods (spring vs. summer). Daily, the rodent carcasses were weighed and the insects present were collected in them for counting and family level identification. We also measured the air and soil temperature daily, in addition to the physical and chemical characteristics of the soil. The total of 11,059 individuals from 28 taxa was collected. The most abundant taxa were Calliphoridae (70%), Formicidae (20%), Muscidae (2%), and Sarcophagidae (2%). Insect richness was higher in spring in riparian vegetation areas; however, decomposition and insect abundance were greater in spring in agricultural areas by the high temperature measured. Vespidae, Sarcophagidae, Muscidae, and Calliphoridae decreased over time with abundance peaks respectively at 3, 7, 7, and 8 days in riparian vegetation areas. Calliphoridae decreased abundance over time with a peak at five days, but Armadillidiidae increased with peak at 6-9 days in agricultural areas. Decay and insect abundance was high in agricultural areas, mainly on the soil surface. Insect richness was high in riparian vegetation areas, especially on the soil surface. Only the superficial layers of soil presented taxon indicators and all decreased over time with abundance peaks of Calliphoridae, Sarcophagidae, and Muscidae at 5-8, 7, and 7 days, respectively. This abundance peak of insect families help to understand the degradative succession of the insect community in small rodents in subtropical systems of the neotropical region.
References
Al-Mekhlafi, F. A., Alajmi, R. A., Almusawi, Z., Mohammed Abd Al GAlil, F., Kaur, P., Al-Wadaan, M., & Al-Khalifa, M. S. (2020). A study of insect succession of forensic importance: Dipteran flies (diptera) in two different habitats of small rodents in Riyadh City, Saudi Arabia. Journal of King Saud University - Science, 32(7), 3111–3118. https://doi.org/10.1016/j.jksus.2020.08.022
Alvim, E. A. C. C., Medeiros, A.O., Rezende, R. S., & Gonçalves, J. F. Jr. (2020). Small leaf breakdown in a Savannah headwater stream. Limnologica, 51(1), 131-138. https://doi.org/10.1016/j.limno.2014.10.005
Andrade-Herrera, K. N., Mello-Patiu, C. A., Núñez-Vázquez, C., & Estrella, E. (2020). Flesh Flies (Diptera: Sarcophagidae) Attracted to a Snake Carcass (Boa constrictor) in Yucatan Peninsula, Mexico. Journal of Medical Entomology, 57(6), 2011–2015. https://doi.org/10.1093/jme/tjaa115
Baker, M. E., & King, R. S. (2010). A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods in Ecology and Evolution, 1(1), 25–37. https://doi.org/10.1111/j.2041-210X.2009.00007.x
Baker, M. E., & King, R. S. (2013). Of TITAN and straw men: An appeal for greater understanding of community data. Freshwater Science, 32(2), 489–506. https://doi.org/10.1899/12-142.1
Bornemissza, G. (1957). An analysis of Arthropod succession in Carrion and the effect of its decomposiion on the soil fauna. Australian Journal of Zoology, 5(1), 1–12.
Byrd, J. H., & Castner, J. L. (2001). Insect of forensic importance. Forensic entomology: The utility of arthropods in legal investigations. CRC Press,
Carvalho, C. J. B. de, & Mello-Patiu, C. A. de. (2008). Key to the adults of the most common forensic species of Diptera in South America. Revista Brasileira de Entomologia, 52(3), 390–406. https://doi.org/10.1590/S0085-56262008000300012
Crawley, M. J. (2007). The R Book. John Wiley & Sons Ltd.
Cruise, A., Watson, D. W., & Schal, C. (2018). Ecological succession of adult necrophilous insects on neonate Sus scrofa domesticus in central North Carolina. PLOS ONE, 13(4), e0195785. https://doi.org/10.1371/journal.pone.0195785
Cruz, T. M., & Vasconcelos, S. D. (2006). Entomofauna de solo associada à decomposição de suíno em um fragmento de Mata Atlântica de Pernambuco, Brasil. 14(2), 10.
De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B. R., Hylander, K., Luoto, M., Vellend, M., Verheyen, K., & Lenoir, J. (2019). Global buffering of temperatures under forest canopies. Nature Ecology & Evolution, 3(5), 744–749. https://doi.org/10.1038/s41559-019-0842-1
Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67(3), 345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2
Feng, A. Y. T., & Himsworth, C. G. (2014). The secret life of the city rat: A review of the ecology of urban Norway and black rats (Rattus norvegicus and Rattus rattus). Urban Ecosystems, 17(1), 149–162. https://doi.org/10.1007/s11252-013-0305-4
Haskell, N. H., Williams, R. E., Catts, D., Adkins, J., & Haskell, C. (2008). Entomology and death: A procedural guide. East Park Printing.
Herdina, A., Bitencourt, G., Mare, R. D., & Barbosa, B. C. (2016). Polybia (Myrapetra) scutellaris (Hymenoptera: Vespidae) foraging on flies at carcasses of Rattus norvegicus (Rodentia: Muridae). Sociobiology, 63(1), 728–730. https://doi.org/10.13102/sociobiology.v63i1.937
Higley, L. G., & Huntington, T. E. (2009). Forensic Entomology: An Introduction. Journal of Medical Entomology, 46(5), 1244–1244. https://doi.org/10.1603/033.046.0538
Ito, M. (2021). Frequency of carcass burial in animal burrows for reproduction by Nicrophorus concolor (Coleoptera: Silphidae). Journal of Ethology, 39(1), 141–144. https://doi.org/10.1007/s10164-020-00678-8
Jales, J. T., Barbosa, T. de M., dos Santos, L. C., Rachetti, V. de P. S., & Gama, R. A. (2020). Carrion decomposition and assemblage of necrophagous dipterans associated with Terbufos (Organophosphate) intoxicated rat carcasses. Acta Tropica, 212, 105652. https://doi.org/10.1016/j.actatropica.2020.105652
King, R. S., Baker, M. E., Kazyak, P. F., & Weller, D. E. (2011). How novel is too novel? Stream community thresholds at exceptionally low levels of catchment urbanization. Ecological Applications, 21(5), 1659–1678. https://doi.org/10.1890/10-1357.1
King, R. S., & Richardson, C. J. (2003). Integrating Bioassessment and Ecological Risk Assessment: An Approach to Developing Numerical Water-Quality Criteria. Environmental Management, 31(6), 795–809. https://doi.org/10.1007/s00267-002-0036-4
Kotzé, Z., Villet, M. H., & Weldon, C. W. (2016). Heat accumulation and development rate of massed maggots of the sheep blowfly, Lucilia cuprina (Diptera: Calliphoridae). Journal of Insect Physiology, 95, 98–104. https://doi.org/10.1016/j.jinsphys.2016.09.009
Kutcherov, D., Lopatina, E. B., & Yermakov, S. (2019). Effects of Temperature and Photoperiod on the Immature Development in Cassida rubiginosa Müll. and C. stigmatica Sffr. (Coleoptera: Chrysomelidae). Scientific Reports, 9(1), 10047. https://doi.org/10.1038/s41598-019-46421-3
Maestri, R., Galiano, D., Kubiak, B. B., & Marinho, J. R. (2014). Diversity of small land mammals in a subtropical Atlantic forest in the western region of the state of Santa Catarina, southern Brazil. Biota Neotropica, 14(4). https://doi.org/10.1590/1676-06032014012914
Maestri, R., Galiano, D., Kubiak, B. B., & Marinho, J. R. (2014). Diversity of small land mammals in a subtropical Atlantic forest in the western region of the state of Santa Catarina, southern Brazil. Biota Neotropica, 14(4). https://doi.org/10.1590/1676-06032014012914
Medeiros, A. O., Callisto, M., Graça, M. A. S., Ferreira, V., Rosa, C. A., França, J., Eller, A., Rezende, R. S., & Gonçalves, J. F. Jr., (2015). Microbial colonization and litter decomposition in a Cerrado stream is limited by low dissolved nutrient concentration. Limnetica, 34(2), 283-292. https://doi.org/ 10.23818/limn.34.22
Moretti, T. de C., & Ribeiro, O. B. (2006). Cephalotes clypeatus Fabricius (Hymenoptera: Formicidae): hábitos de nidificação e ocorrência em carcaça animal. Neotropical Entomology, 35(3), 412–415. https://doi.org/10.1590/S1519-566X2006000300019
Moskowitz, B. M., Jackson, M., & Chandler, V. (2015). Geophysical Properties of the Near-Surface Earth: Magnetic Properties. In G. Schubert (Ed.), Treatise on Geophysics (Second Edition) (pp. 139–174). Elsevier. https://doi.org/10.1016/B978-0-444-53802-4.00191-3
Na, M., & Pt, J. (2013). Forensic Entomology in Malaysia: A Review. Malaysian Journal of Forensic Sciences, 4(1), 7.
Navarro, F. K. S. P., Rezende, R. S., & Gonçalves, J. F. Jr., (2013). Experimental assessment of temperature increase and presence of predator carcass changing the response of invertebrate shredders. Biota Neotropica, 13(4), 28–33. https://doi.org/10.1590/S1676-06032013000400002
Oliveira-Costa, J. (2013). Insetos “Peritos” – A Entomologia Forense no Brasil. Millennium.
Ota, Y., Masuda, T., Araki, K., & Yamaguchi, M. (2019). A mobile multipyranometer array for the assessment of solar irradiance incident on a photovoltaic-powered vehicle. Solar Energy, 184, 84–90. https://doi.org/10.1016/j.solener.2019.03.084
Parry, N. J., Mansell, M. W., & Weldon, C. W. (2016). Seasonal, Locality, and Habitat Variation in Assemblages of Carrion-Associated Diptera in Gauteng Province, South Africa. Journal of Medical Entomology, 53(6), 1322–1329. https://doi.org/10.1093/jme/tjw104
Probst, C., Gethmann, J., Amendt, J., Lutz, L., Teifke, J. P., & Conraths, F. J. (2020). Estimating the Postmortem Interval of Wild Boar Carcasses. Veterinary Sciences, 7(1), 6. https://doi.org/10.3390/vetsci7010006
Pujol-Luz, J. R., Marques, H., Ururahy-Rodrigues, A., Rafael, J. A., Santana, F. H. A., Arantes, L. C., & Constantino, R. (2006). A Forensic Entomology Case from the Amazon Rain Forest of Brazil. Journal of Forensic Sciences, 51(5), 1151–1153. https://doi.org/10.1111/j.1556-4029.2006.00217.x
Quintão, J. M. B., Rezende, R. S. & Gonçalves, J. F. Jr., (2013). Microbial effects in leaf breakdown in tropical reservoirs of different trophic status. Freshwater Science 32(1), 933-950. https://doi.org/10.1899/12-112.1
Rabinowitz, A., & Nottingham, B. G. J. (1989). Mammal species richness and relative abundance of small mammals in a subtropical wet forest of Central America. 53(2), 217–226. https://doi.org/10.1515/mamm.1989.53.2.217
Rezende, R. S., Medeiros, A. O., Gonçalves, J. F., Feio, M. J., Pereira Gusmão, E., de Andrade Gomes, V. Â., Calor, A., & Almeida, J. dos S. D. (2019). Patterns of litter inputs, hyphomycetes and invertebrates in a Brazilian savanna stream: A process of degradative succession. Journal of Tropical Ecology, 35(6), 297–307. https://doi.org/10.1017/S0266467419000269
Rezende, R. S., Bernardi, J. P., Gomes, E. S., Martins, R. T., Hamada, N., & Gonçalves, J. F. (2021). Effects of Phylloicus case removal on consumption of leaf litter from two Neotropical biomes (Amazon rainforest and Cerrado savanna). Limnology, 22(1), 35–42. https://doi.org/10.1007/s10201-020-00628-w
Rezende, R. S., Santos, A. M., Medeiros, A. O., & Gonçalves Jr., J. F. (2017). Temporal leaf litter breakdown in a tropical riparian forest with an open canopy. Limnetica, 36, 445–459. https://doi.org/10.23818/limn.36.14
Richards, C. S., Williams, K. A., & Villet, M. H. (2009). Predicting Geographic Distribution of Seven Forensically Significant Blowfly Species (Diptera: Calliphoridae) in South Africa. African Entomology, 17(2), 170–182. https://doi.org/10.4001/003.017.0207
Rodríguez, J. N., & Liria, J. (2017). Seasonal abundance in necrophagous Diptera and Coleoptera from northern Venezuela. Tropical Biomedicine, 34(2), 315–323.
Sfenthourakis, S., & Hornung, E. (2018). Isopod distribution and climate change. ZooKeys, 801, 25–61. https://doi.org/10.3897/zookeys.801.23533
Souza, A. M., & Linhares, A. X. (1997). Diptera and Coleoptera of potential forensic importance in southeastern Brazil: Relative abundance and seasonality. Medical and Veterinary Entomology, 1(11), 8–12. https://doi.org/10.1111/j.1365-2915.1997.tb00284.x
Tedesco, M. J., Gianello, C., Bissani, C. A., Bohmen, H., & Volkweiss, S. J. (1995). Analises de solo, plantas e outros materiais (2nd ed.). Porto Alegre : Departamento de solos da UFRGS.
Tembe, D., & Mukaratirwa, S. (2021). Insect Succession and Decomposition Pattern on Pig Carrion During Warm and Cold Seasons in Kwazulu-Natal Province of South Africa. Journal of Medical Entomology, tjab099. https://doi.org/10.1093/jme/tjab099
Terborgh, J., Losos, E., Riley, M. P., & Riley, M. B. (1993). Predation by vertebrates and invertebrates on the seeds of five canopy tree species of an Amazonian forest. In T. H. Fleming & A. Estrada (Eds.), Frugivory and seed dispersal: Ecological and evolutionary aspects (pp. 375–386). Springer Netherlands. https://doi.org/10.1007/978-94-011-1749-4_26
Trivia, A. L., & de Carvalho Pinto, C. J. (2018). Analysis of the Effect of Cyclophosphamide and Methotrexate on Chrysomya megacephala (Diptera: Calliphoridae),. Journal of Forensic Sciences, 63(5), 1413–1418. https://doi.org/10.1111/1556-4029.13740
von Hoermann, C., Lackner, T., Sommer, D., Heurich, M., Benbow, M. E., & Müller, J. (2021). Carcasses at Fixed Locations Host a Higher Diversity of Necrophilous Beetles. Insects, 12(5), 412. https://doi.org/10.3390/insects12050412
Wang, Y., Wang, Y., Wang, M., Xu, W., Zhang, Y., & Wang, J. (2021). Forensic Entomology in China and Its Challenges. Insects, 12(3), 230. https://doi.org/10.3390/insects12030230
Wolff, M., Uribe, A., Ortiz, A., & Duque, P. (2001). A preliminary study of forensic entomology in Medellı́n, Colombia. Forensic Entomology, 120(1), 53–59. https://doi.org/10.1016/S0379-0738(01)00422-4
Zeariya, M., & Kabadaia, M. (2019). The Abundance of Forensic Insects on Dog and Rabbit Carcasses in Different Habitats and Developmental Stages of Chrysomya albiceps as a Forensic Indicator. Egyptian Academic Journal of Biological Sciences, E. Medical Entomology & Parasitology, 11(1), 41–49. https://doi.org/10.21608/eajbse.2019.38885
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Bruna da Silva; Suéle Santolin; Renan de Souza Rezende
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.