Genomic analysis and plant growth-promoting potential of a Serratia marcescens isolated from food
DOI:
https://doi.org/10.33448/rsd-v11i1.24799Keywords:
Serratia marcescens; Plant growth-promoting; Biotechnology.Abstract
A genomic analysis of the potential application of a Serratia marcescens strain in the plant-growth promotion. We performed whole-genome sequencing of Serratia marcescens isolated from a Minas Frescal Cheese. The genomic repertoire revealed a bacterium of agricultural and biotechnological interest. In the plant-growth promotion traits, we highlight genes encoding proteins possibly responsible for the biosynthesis of phytohormone indole acetic acid, organic compounds that act in iron uptake, and the Phosphate solubilization system. Genes encoding for enzymes like the versatile L-asparaginase stimulates the development of seeds and grains and can benefit the food industry due to a mitigation effect on acrylamide and notably, has medical applications as a chemotherapeutic agent or is applicable by its antimicrobial and anti-inflammatory properties. Moreover, functional diversity of genes encoding for resistance to different metals and metabolism of xenobiotics genes can be found in this strain, reinforcing its biotechnological potential. The versatile enzymes that can be produced by S. marcescens benefit the food, pharmaceutical, textile, agronomic, and cosmetic industries. The relevant genetic systems of S. marcescens described here may be used to promote plant growth and health and improve the environment. To the best of our knowledge, this is the first genome sequence report on S. marcescens isolated from cheese, with potential application as promoting plant growth and providing a baseline for future genomic studies on the development of this species.
References
Abdel- Razik, N. E., EL-Baghdady, K. Z., EL-Shatoury, E. H., & G Mohamed, N. (2019). Isolation, optimization, and antitumor activity of l-asparaginase extracted from Pectobacterium carotovorum and Serratia marcescens on human breast adenocarcinoma and human hepatocellular carcinoma cancer cell lines. Asian Journal of Pharmaceutical and Clinical Research, 332–337. https://doi.org/10.22159/ajpcr.2019.v12i2.29646
Abreo, E., & Altier, N. (2019). Pangenome of Serratia marcescens strains from nosocomial and environmental origins reveals different populations and the links between them. Scientific Reports, 9(1), 46. https://doi.org/10.1038/s41598-018-37118-0
Adeolu, M., Alnajar, S., Naushad, S., & S. Gupta, R. (2016). Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morgane. International Journal of Systematic and Evolutionary Microbiology, 66(12), 5575–5599. https://doi.org/10.1099/ijsem.0.001485
Ahmed, F., Arshad, M., Ditta, A., Hussain, A., Naveed, M., Hasnain, M., & Nazir, Q. (2016). Combining Textile Effluent Wastewater with Organic Fertilizer for Improved Growth and Productivity of Wheat and Soil Health. Journal of Environmental and Agricultural Sciences, 8, 14–20.
Alegria, T. G. P., Meireles, D. A., Cussiol, J. R. R., Hugo, M., Trujillo, M., de Oliveira, M. A., … Netto, L. E. S. (2017). Ohr plays a central role in bacterial responses against fatty acid hydroperoxides and peroxynitrite. Proceedings of the National Academy of Sciences, 114(2), E132–E141. https://doi.org/10.1073/pnas.1619659114
Amarsy, R., Pean de Ponfilly, G. ., Benmansour, H. ., Jacquier, H., Cambau, E. ., & Mégarbane, B. (2020). Serratia marcescens outbreak in the intensive care unit during the COVID-19 pandemic: A paradoxical risk? Médecine et Maladies Infectieuses, 50(8), 750–751. https://doi.org/10.1016/j.medmal.2020.05.004
Amin, A. A., Gharib, F. A. E., El-Awadi, M., & Rashad, E.-S. M. (2011). Physiological response of onion plants to foliar application of putrescine and glutamine. Scientia Horticulturae, 129(3), 353–360. https://doi.org/10.1016/j.scienta.2011.03.052
Amin, H., Arain, B. A., Jahangir, T. M., Abbasi, A. R., Mangi, J., Abbasi, M. S., & Amin, F. (2021). Copper (Cu) tolerance and accumulation potential in four native plant species: a comparative study for effective phytoextraction technique. Geology, Ecology, and Landscapes, 5(1), 53–64. https://doi.org/10.1080/24749508.2019.1700671
Araghi, A., Hashemi, S., Sepahi, A. A., Faramarzi, M. A., & Amin, M. (2019). Purification and study of anti-cancer effects of Serratia marcescens serralysin. Iranian Journal of Microbiology, 11(4), 320–327. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/31719964
Bazzi, W., Abou Fayad, A. G., Nasser, A., Haraoui, L.-P., Dewachi, O., Abou-Sitta, G., … Matar, G. M. (2020). Heavy Metal Toxicity in Armed Conflicts Potentiates AMR in A. baumannii by Selecting for Antibiotic and Heavy Metal Co-resistance Mechanisms. Frontiers in Microbiology, 11, 68. https://doi.org/10.3389/fmicb.2020.00068
Brettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., … Xia, F. (2015). RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Scientific Reports, 5(1), 8365. https://doi.org/10.1038/srep08365
Brown, M. E., & Chang, M. C. Y. (2014). Exploring bacterial lignin degradation. Current Opinion in Chemical Biology, 19(1), 1–7. https://doi.org/10.1016/j.cbpa.2013.11.015
Burd, G. I., Dixon, D. G., & Glick, B. R. (2000). Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology, 46(3), 237–245. https://doi.org/10.1139/w99-143
Cook, S. D. (2019). An Historical Review of Phenylacetic Acid. Plant and Cell Physiology, 60(2), 243–254. https://doi.org/10.1093/pcp/pcz004
Cristina, M., Sartini, M., & Spagnolo, A. (2019). Serratia marcescens Infections in Neonatal Intensive Care Units (NICUs). International Journal of Environmental Research and Public Health, 16(4), 610. https://doi.org/10.3390/ijerph16040610
Damare, V. S., & Kajawadekar, K. G. (2020). A preliminary study on L-asparaginase from mangrove detritus-derived fungi and its application in plant growth promotion – MycoAsia. Retrieved from http://mycoasia.org/a-preliminary-study-on-l-asparaginase-from-mangrove-detritus-derived-fungi-and-its-application-in-plant-growth-promotion/
Das, S. N., Dutta, S., Kondreddy, A., Chilukoti, N., Pullabhotla, S. V. S. R. N., Vadlamudi, S., & Podile, A. R. (2010). Plant Growth-Promoting Chitinolytic Paenibacillus elgii Responds Positively to Tobacco Root Exudates. Journal of Plant Growth Regulation, 29(4), 409–418. https://doi.org/10.1007/s00344-010-9152-1
Davis, J. J., Wattam, A. R., Aziz, R. K., Brettin, T., Butler, R., Butler, R. M., … Stevens, R. (2020). The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Research, 48(D1), D606–D612. https://doi.org/10.1093/nar/gkz943
dos Santos, R. A., Rodríguez, D. M., Ferreira, I. N. da S., de Almeida, S. M., Takaki, G. M. de C., & de Lima, M. A. B. (2021). Novel production of biodispersant by Serratia marcescens UCP 1549 in solid-state fermentation and application for oil spill bioremediation. Environmental Technology, 1–12. https://doi.org/10.1080/09593330.2021.1910733
Falade, A. O., & Ekundayo, T. C. (2021). Emerging biotechnological potentials of DyP‐type peroxidases in remediation of lignin wastes and phenolic pollutants: a global assessment (2007–2019). Letters in Applied Microbiology, 72(1), 13–23. https://doi.org/10.1111/lam.13392
Forshaw, T. E., Holmila, R., Nelson, K. J., Lewis, J. E., Kemp, M. L., Tsang, A. W., … Furdui, C. M. (2019). Peroxiredoxins in Cancer and Response to Radiation Therapies. Antioxidants, 8(1), 11. https://doi.org/10.3390/antiox8010011
Friman, M. J., Eklund, M. H., Pitkälä, A. H., Rajala-Schultz, P. J., & Rantala, M. H. J. (2019). Description of two Serratia marcescens associated mastitis outbreaks in Finnish dairy farms and a review of literature. Acta Veterinaria Scandinavica, 61(1), 54. https://doi.org/10.1186/s13028-019-0488-7
Gangadharan, A., Jolly, J., & John, N. (2020). Bioprospecting of novel therapeutic agents from marine bacterium; Serratia marcescens. Materials Today: Proceedings, 25, 298–301. https://doi.org/10.1016/j.matpr.2020.01.465
García-Silvera, E. E., Martínez-Morales, F., Bertrand, B., Morales-Guzmán, D., Rosas-Galván, N. S., León-Rodríguez, R., & Trejo-Hernández, M. R. (2018). Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production. Biotechnology and Applied Biochemistry, 65(2), 156–172. https://doi.org/10.1002/bab.1565
Garcia, C. J., Pericleous, A., Elsayed, M., Tran, M., Gupta, S., Callaghan, J. D., … Kadouri, D. E. (2018). Serralysin family metalloproteases protects Serratia marcescens from predation by the predatory bacteria Micavibrio aeruginosavorus. Scientific Reports, 8(1), 14025. https://doi.org/10.1038/s41598-018-32330-4
Gilmour, M. W., Thomson, N. R., Sanders, M., Parkhill, J., & Taylor, D. E. (2004). The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid, 52(3), 182–202. https://doi.org/10.1016/j.plasmid.2004.06.006
Gong, H., Jiao, Y., Hu, W., & Pua, E.-C. (2005). Expression of glutathione-S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro. Plant Molecular Biology, 57(1), 53–66. https://doi.org/10.1007/s11103-004-4516-1
Gritsunov, A., Peek, J., Diaz Caballero, J., Guttman, D., & Christendat, D. (2018). Structural and biochemical approaches uncover multiple evolutionary trajectories of plant quinate dehydrogenases. The Plant Journal, 95(5), 812–822. https://doi.org/10.1111/tpj.13989
Guest, R. L., & Raivio, T. L. (2016). Role of the Gram-Negative Envelope Stress Response in the Presence of Antimicrobial Agents. Trends in Microbiology, 24(5), 377–390. https://doi.org/10.1016/j.tim.2016.03.001
Gumila, C., Ancelin, M. L., Delort, A. M., Jeminet, G., & Vial, H. J. (1997). Characterization of the potent in vitro and in vivo antimalarial activities of ionophore compounds. Antimicrobial Agents and Chemotherapy, 41(3), 523–529. https://doi.org/10.1128/AAC.41.3.523
Hawkesford, M. J. (2007). Sulfur and plant ecology: a central role of sulfate transporters in responses to sulfur availability. https://doi.org/10.1007/978-1-4020-5887-5_1
Hodges, T. K., Darding, R. L., & Weidner, T. (1971). Gramicidin-D-stimulated influx of monovalent cations into plant roots. Planta, 97(3), 245–256. https://doi.org/10.1007/BF00389205
Huang, D., Yu, C., Shao, Z., Cai, M., Li, G., Zheng, L., … Zhang, J. (2020). Identification and Characterization of Nematicidal Volatile Organic Compounds from Deep-Sea Virgibacillus dokdonensis MCCC 1A00493. Molecules, 25(3), 744. https://doi.org/10.3390/molecules25030744
Ishii, K., Adachi, T., Imamura, K., Takano, S., Usui, K., Suzuki, K., … Sekimizu, K. (2012). Serratia marcescens Induces Apoptotic Cell Death in Host Immune Cells via a Lipopolysaccharide- and Flagella-dependent Mechanism*. Journal of Biological Chemistry, 287(43), 36582–36592. https://doi.org/10.1074/jbc.M112.399667
Kacálková, L., Tlustoš, P., & Száková, J. (2009). Phytoextraction of cadmium, copper, zinc and mercury by selected plants. Plant, Soil and Environment, 55(No. 7), 295–304. https://doi.org/10.17221/100/2009-PSE
Kamran, S., Shahid, I., Baig, D. N., Rizwan, M., Malik, K. A., & Mehnaz, S. (2017). Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat. Frontiers in Microbiology, 8(DEC), 2593. https://doi.org/10.3389/fmicb.2017.02593
Khan, A. R., Park, G.-S., Asaf, S., Hong, S.-J., Jung, B. K., & Shin, J.-H. (2017). Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants. PLOS ONE, 12(2), e0171534. https://doi.org/10.1371/journal.pone.0171534
Knauff, U., Schulz, M., & Scherer, H. W. (2003). Arylsufatase activity in the rhizosphere and roots of different crop species. European Journal of Agronomy, 19(2), 215–223. https://doi.org/10.1016/S1161-0301(02)00035-7
Long, Z.-D., Xu, J.-H., Zhao, L.-L., Pan, J., Yang, S., & Hua, L. (2007). Overexpression of Serratia marcescens lipase in Escherichia coli for efficient bioresolution of racemic ketoprofen. Journal of Molecular Catalysis B: Enzymatic, 47(3–4), 105–110. https://doi.org/10.1016/j.molcatb.2007.04.004
Lv, Y., Jiang, Y., Peng, W., Fang, Y., Dong, W., Zhou, J., … Jiang, M. (2021). Genetic manipulation of non‐solvent‐producing microbial species for effective butanol production. Biofuels, Bioproducts and Biorefining, 15(1), 119–130. https://doi.org/10.1002/bbb.2152
Mahmood, F., Shahid, M., Hussain, S., Shahzad, T., Tahir, M., Ijaz, M., … Babar, S. A. K. (2017). Potential plant growth-promoting strain Bacillus sp. SR-2-1/1 decolorized azo dyes through NADH-ubiquinone:oxidoreductase activity. Bioresource Technology, 235, 176–184. https://doi.org/10.1016/j.biortech.2017.03.098
Melo-Nascimento, A. O. dos S., Sant´Anna, B. M. M., Gonçalves, C. C., Santos, G., Noronha, E., Parachin, N., … Bruce, T. (2020). Complete genome reveals genetic repertoire and potential metabolic strategies involved in lignin degradation by environmental ligninolytic Klebsiella variicola P1CD1. PLOS ONE, 15(12), e0243739. https://doi.org/10.1371/journal.pone.0243739
Méndez-Santiago, E. W., Gómez-Rodríguez, O., Sánchez-Cruz, R., Folch-Mallol, J. L., Hernández-Velázquez, V. M., Villar-Luna, E., … Wong-Villarreal, A. (2021). Serratia sp., an endophyte of Mimosa pudica nodules with nematicidal, antifungal activity and growth-promoting characteristics. Archives of Microbiology, 203(2), 549–559. https://doi.org/10.1007/s00203-020-02051-2
Naseem, A., Tabasum, S., Zia, K. M., Zuber, M., Ali, M., & Noreen, A. (2016). Lignin-derivatives based polymers, blends and composites: A review. International Journal of Biological Macromolecules, 93, 296–313. https://doi.org/10.1016/j.ijbiomac.2016.08.030
Parmar, H. Y., & Chakraborty, H. (2016). Effect of siderophore on plant growth promotion. International Journal of Applied and Pure Science and Agriculture, 2(3). Retrieved from https://ijapsa.com/papers/volume-2/issue-3/effect-of-siderophore-on-plan-growth-promotion/
Pavithrra, G., & Rajasekaran, R. (2020). Gramicidin Peptide to Combat Antibiotic Resistance: A Review. International Journal of Peptide Research and Therapeutics, 26(1), 191–199. https://doi.org/10.1007/s10989-019-09828-0
Pedraza, R. O., Motok, J., Salazar, S. M., Ragout, A. L., Mentel, M. I., Tortora, M. L., … Díaz-Ricci, J. C. (2010). Growth-promotion of strawberry plants inoculated with Azospirillum brasilense. World Journal of Microbiology and Biotechnology, 26(2), 265–272. https://doi.org/10.1007/s11274-009-0169-1
Peixoto, F. B. S., Peixoto, J. C. D. C., Assunção, E. N. de, Peixoto, E. M., Pereira, J. O., & Astolfi-Filho, S. (2017). Petroleum biodegrading and co-resistance to antibiotics by Serratia marcescens strain isolated in Coari, Amazonas. Acta Scientiarum. Biological Sciences, 39(4), 489. https://doi.org/10.4025/actascibiolsci.v39i4.36223
Perkins, A., Nelson, K. J., Parsonage, D., Poole, L. B., & Karplus, P. A. (2015). Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends in Biochemical Sciences, 40(8), 435–445. https://doi.org/10.1016/j.tibs.2015.05.001
Rames, A. (2020). Predatory Bacteria: A Possible Key for the Lock of Antibiotic Resistance. In Transactions on Science and Technology (Vol. 7). Retrieved from http://tost.unise.org/
Ramesh, S. A., Tyerman, S. D., Gilliham, M., & Xu, B. (2017). γ-Aminobutyric acid (GABA) signalling in plants. Cellular and Molecular Life Sciences, 74(9), 1577–1603. https://doi.org/10.1007/s00018-016-2415-7
Rodrı́guez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17(4–5), 319–339. https://doi.org/10.1016/S0734-9750(99)00014-2
Rouhani, M., Valizadeh, V., Molasalehi, S., & No-Rouzian, D. (2020). Production and Expression Optimization of Heterologous Serra-tiopeptidase. Iranian Journal of Public Health, 931–939. Retrieved from http://ijph.tums.ac.ir/index.php/ijph/article/view/20663
Ryu, C.-M., Choi, H. K., Lee, C.-H., Murphy, J. F., Lee, J.-K., & Kloepper, J. W. (2013). Modulation of Quorum Sensing in Acyl-homoserine Lactone-Producing or -Degrading Tobacco Plants Leads to Alteration of Induced Systemic Resistance Elicited by the Rhizobacterium Serratia marcescens 90-166. The Plant Pathology Journal, 29(2), 182–192. https://doi.org/10.5423/PPJ.SI.11.2012.0173
Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068–2069. https://doi.org/10.1093/bioinformatics/btu153
Seo, J.-S., Keum, Y.-S., & Li, Q. (2009). Bacterial Degradation of Aromatic Compounds. International Journal of Environmental Research and Public Health, 6(1), 278–309. https://doi.org/10.3390/ijerph6010278
Sharifi, R., & Ryu, C.-M. (2018). Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Annals of Botany, 122(3), 349–358. https://doi.org/10.1093/aob/mcy108
Shibatani, T., Omori, K., Akatsuka, H., Kawai, E., & Matsumae, H. (2000). Enzymatic resolution of diltiazem intermediate by Serratia marcescens lipase: molecular mechanism of lipase secretion and its industrial application. Journal of Molecular Catalysis B: Enzymatic, 10(1–3), 141–149. https://doi.org/10.1016/S1381-1177(00)00122-3
Silva, C. R., Okuno, N. T., Macedo, V. H. L. de M., Freire, I. D. R., Miller, R. M., & Marin, V. A. (2020). Resistome in gram-negative bacteria from soft cheese in Brazil. Revista de Ciências Médicas e Biológicas, 19(3), 430. https://doi.org/10.9771/cmbio.v19i3.35460
Stauss-Grabo, M., Atiye, S., Le, T., & Kretschmar, M. (2014). Decade-long use of the antimicrobial peptide combination tyrothricin does not pose a major risk of acquired resistance with gram-positive bacteria and candida spp. Pharmazie, 69(11), 838–841. https://doi.org/10.1691/ph.2014.4686
Stiborová, M., Schmeiser, H. ., & Frei, E. (2000). Oxidation of xenobiotics by plant microsomes, a reconstituted cytochrome P450 system and peroxidase: a comparative study. Phytochemistry, 54(4), 353–362. https://doi.org/10.1016/S0031-9422(00)00123-0
Strobel, G. A., Morrison, S. L., & Cassella, M. (2002). Protecting plants from oomycete pathogens by treatment with compositions containing serratamolide and oocydin a from Serratia marcescens. https://doi.org/C07D493/08
Tanizawa, Y., Fujisawa, T., Kaminuma, E., Nakamura, Y., & Arita, M. (2016). DFAST and DAGA: web-based integrated genome annotation tools and resources. Bioscience of Microbiota, Food and Health, 35(4), 173–184. https://doi.org/10.12938/bmfh.16-003
Tanizawa, Y., Fujisawa, T., & Nakamura, Y. (2018). DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics, 34(6), 1037–1039. https://doi.org/10.1093/bioinformatics/btx713
Tiwari, M. (2017). The role of serratiopeptidase in the resolution of inflammation. Asian Journal of Pharmaceutical Sciences, 12(3), 209–215. https://doi.org/10.1016/j.ajps.2017.01.003
Troskie, A. M., de Beer, A., Vosloo, J. A., Jacobs, K., & Rautenbach, M. (2014). Inhibition of agronomically relevant fungal phytopathogens by tyrocidines, cyclic antimicrobial peptides isolated from Bacillus aneurinolyticus. Microbiology, 160(9), 2089–2101. https://doi.org/10.1099/mic.0.078840-0
Wang, J.-Y., Zhou, L., Chen, B., Sun, S., Zhang, W., Li, M., … He, Y.-W. (2015). A functional 4-hydroxybenzoate degradation pathway in the phytopathogen Xanthomonas campestris is required for full pathogenicity. Scientific Reports, 5(1), 18456. https://doi.org/10.1038/srep18456
Wani, P. A., & Irene, O. I. (2013). Screening of Microbes for Their Metal, Antibiotic Resistance and Plant Growth Promoting Activity. Current Research in Bacteriology, 7(1), 22–31. https://doi.org/10.3923/crb.2014.22.31
Xie, Q., Essemine, J., Pang, X., Chen, H., & Cai, W. (2020). Exogenous application of abscisic acid to shoots promotes primary root cell division and elongation. Plant Science, 292, 110385. https://doi.org/10.1016/j.plantsci.2019.110385
Xu, J., Wang, X., & Guo, W. (2015). The cytochrome P450 superfamily: Key players in plant development and defense. Journal of Integrative Agriculture, 14(9), 1673–1686. https://doi.org/10.1016/S2095-3119(14)60980-1
Yang, F., Zhang, F., Li, H., Wu, H., Zhao, H., Cheng, X., … Zhu, J. (2021). Contribution of environmental factors on the distribution of antibiotic resistance genes in agricultural soil. European Journal of Soil Biology, 102, 103269. https://doi.org/10.1016/j.ejsobi.2020.103269
You, S.-H., Zhu, B., Han, H.-J., Wang, B., Peng, R.-H., & Yao, Q.-H. (2015). Phytoremediation of 2,4,6-trinitrotoluene by Arabidopsis plants expressing a NAD(P)H-flavin nitroreductase from Enterobacter cloacae. Plant Biotechnology Reports, 9(6), 417–430. https://doi.org/10.1007/s11816-015-0379-y
Zied, Z., Edahech, A., Rigano, F., Micalizzi, G., Mondello, L., Kharrat, N., … Cacciola, F. (2018). Monoacylglycerol and diacylglycerol production by hydrolysis of refined vegetable oil by‐products using an immobilized lipase from Serratia sp. W3. Journal of Separation Science, 41(23), 4323–4330. https://doi.org/10.1002/jssc.201800432
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Cristiane Rodrigues Silva; Rafael Monção Miller; Bárbara Costa Pereira; Lílian Aveleda; Victor Augustus Marin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.