Packaging and storage of medicinal plants

Authors

DOI:

https://doi.org/10.33448/rsd-v11i7.24813

Keywords:

Quality; Chemical compounds; Therapeutic properties; Essential oil.

Abstract

The therapeutic properties of plants are as old as the occurrence of human species on Earth. Regardless of the purpose of the use of medicinal plants, there is no doubt that there has been an increase in demand for natural methods, representing a major challenge for producers and researchers, regarding standardization and quality control of the raw material, to ensure the quality of the species offered to consumers and the pharmaceutical industry. Despite the increased consumption and consequent expansion of the medicinal plants market, there are few specific studies involving the use of packaging and storage techniques for this type of product. Given the above, this study surveyed concepts involving packaging, as well as characteristics of some polymers commonly used in the storage of plant products, techniques and equipment used in the packaging of food products and work involving the use of modified atmosphere in the medicinal plants storage.

References

Ashley, R. J. (1985). Permeability and plastics packaging, in: Comyn, J. (Ed.), Polymer Permeability. Elsevier Applied Science Publishers, Essex.

Awaja, F., & Pavel, D. (2005). Recycling of PET. European Polymer Journal. 41, 1453–1477. https://doi.org/10.1016/j.eurpolymj.2005.02.005.

Badke, M. R. ., Budó, M. D. L. D., Silva, F. M. Da., & Ressel, L. B. (2011). Plantas medicinais: o saber sustentado na prática do cotidiano popular. Escola Anna Nery. 15,132–139. https://doi.org/10.1590/S1414-81452011000100019.

Barbosa, C. K. R., Fonseca, M. C. M., Silva, T. P., Finger, F. L., Casali, V. W. D., & Cecon, P. R. (2016). Effect of hydrocooling, packaging, and cold storage on the post-harvest quality of peppermint (Mentha piperita L.). Revista Brasileira de Plantas Medicinais. 18, 248–255. https://doi.org/10.1590/1983-084X/15_135.

Benzie, I. F. F. , & Wachtel-Galor, S. (2015). Chapter 1 Herbal Medicine. NCBI Bookshelf 1–11. https://doi.org/10.1143/JJAP.49.03CB02.

Brackmann, A., & Chitarra, A. B. (1998). Atmosfera controlada e atmosfera modificada, in: Boren, F.M. (Ed.), Armazenamento e Processamento de Produtos Agrícolas. UFLA/SBEA, Lavras, 133–170.

Brandenburg, J. S., & Zagory, D. (2009). Modified and Controlled Atmosphere Packaging Technology and Applications, in: Yahia, E.M. (Ed.), Modified and Controlled Atmospheres for the Storage, Transportation, and Packaging of Horticultural Commodities. CRC Press, Boca Raton, 74–94.

BRASIL (2021). Agência Nacional de Vigilância Sanitária. Farmacopéia Brasileira, quinta. ed., Brasília.

Canevarolo Junior, S. V. (2006). Ciência dos polímeros: um texto básico para tecnólogos engenheiros. Artliber, São Paulo.

Castro, H. G., Ferreira, F. A., Silva, D. J. H., & Mosquim, P. R. (2004). Contribuição ao Estudo das Plantas Medicinais - Metabólitos Secundários | Editora UFV, 2nd ed. Visconde do Rio Branco.

Chaliha, M., Cusack, A., Currie, M., Sultanbawa, Y., & Smyth, H. (2013). Effect of Packaging Materials and Storage on Major Volatile Compounds in Three Australian Native Herbs. Journal of Agricultural and Food Chemistry. 61, 5738–5745.

Chan, J. W. R., Chong, C. H., Abdul Malek, N. F., Khek, C. H., Figiel, A., & Wojdylo, A. (2015). Trends in Drying and Extracting Bioactive Components from Herbs, in: Hii, C.L., Jangam, S.V., Ong, S.Z., Show, P.L., Mujumdar, A.S. (Eds.), Processing of Foods, Vegetables and Fruits: Recent Advances. Singapore. 85–104.

Chin, S. K., & Law, C. L. (2010). Product Quality and Drying Characteristics of Intermittent Heat Pump Drying of Ganoderma tsugae Murrill. Dry. Technol. 28, 1457–1465. https://doi.org/10.1080/07373937.2010.482707

Church, I. J., & Parsons, A. L. (1995). Modified atmosphere packaging technology: A review. Journal of the Science of Food and Agriculture. 67, 143–152. https://doi.org/10.1002/jsfa.2740670202

Church, N. (1994). Developments in modified-atmosphere packaging and related technologies. Trends in Food Science & Technology. 5, 345–352. https://doi.org/10.1016/0924-2244(94)90211-9

Cole, E. R., Santos, R. B. dos., Lacerda Jínior, V., Martins, J. D. L., & Greco, S. J. (2014). Chemical composition of essential oil from ripe fruit of Schinus terebinthifolius Raddi and evaluation of its activity against wild strains of hospital origin. Brazilian Journal of Microbiology. 45, 821–824.

Cooksey, K. (2006). Food packaging, principles and practices. 2nd ed, Packaging Technology and Science. CRC, Taylor and Francis, Boca Raton. https://doi.org/10.1002/pts.777.

Corrêa Junior, C., Scheffer, M. C., & Ming, L. C. (2006). Cultivo Agroecológico de Plantas Medicinais, Aromáticas e Condimentares. Ministério do Desenvolvimento Agrário 58–65.

Costa, L. C. B., Pinto, J. E. B. P., Bertolucci, S. K. V., Alves, P. B., & Evangelino, T. S. (2009). Variação no rendimento e composição química do óleo essencial de folhas de atroveran (Ocimum selloi Benth.) inteiras e moídas sob condições de armazenamento. Revista Brasileira de Plantas Medicinais. 11, 43–48.

Coutinho, F. M. B., Mello, I. L., & Maria, L. C. D. S. (2003). Polietileno : Principais Tipos , Propriedades e Aplicações. Polímeros Ciência e Tecnologia. 13, 1–13.

Cowan, M.M., 1999. Plant products as antimicrobial agents. Clinical Microbiology Reviews. 12, 564–82.

da Silva, S., Luvielmo, M., Geyer, M., & Pra, I. (2011). Potencialidades do uso do ozônio no processamento de alimentos. Semina: Ciências Agrárias. 32, 659–682. https://doi.org/10.5433/1679-0359.2011v32n2p659.

Dutra, R. C. ., Campos, M. M. ., Santos, A. R. S. ., & Calixto, J. B. (2016). Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacological Research. 112, 4–29. https://doi.org/10.1016/j.phrs.2016.01.021

E313-10, A. (2010). Standard Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates,. ASTM International, West Conshohocken.

Ebadi, M. T., Sefidkon, F., Azizi, M., & Ahmadi, N. (2017). Packaging methods and storage duration affect essential oil content and composition of lemon verbena (Lippia citriodora Kunth.). Food Science & Nutrition. 5, 588–595. https://doi.org/10.1002/fsn3.434.

FDA, Food and Drug Administration (2018). Select Committee on GRAS Substances (SCOGS) Opinion: Carbon dioxide. URL https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/SCOGS/ucm261241 (accessed 2.3.18).

Floros, J. D., Matsos, K. I., n.d. Innovations in food packaging [WWW Document].

Floros, J. D., & Matsos K. I. (2005). Introduction to modified atmosphere packaging. In: JH Han, editor. Innovations in food packaging. London : Elsevier Ltd. 159– 72.

Fonseca, S. C., Oliveira, F. A. ., & Brecht, J. K. (2002). Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review. Journal of Food Engineering. 52, 99–119. https://doi.org/10.1016/S0260-8774(01)00106-6.

Gorny, J. R., & Kader, A. A. (1996). Controlled atmosphere suppression of ACC synthase and ACC oxidase in ‘Golden Delicious’ apples during long-term cold storage. Journal of the American Society for Horticultural Science. 121, 751–755.

Gorris, L. G. M., & Peppelenbos, H. W. (19920. Modified Atmosphere andVacuum Packaging to Extendthe Shelf Life of Respiring Food Products. Horttechnology 2, 303–309.

Gupta, K. J., Zabalza, A., & van Dongen, J. T. (2009). Regulation of respiration when the oxygen availability changes. Physiologia Plantarum. 137, 383–391. https://doi.org/10.1111/j.1399-3054.2009.01253.x

Huang, X., Li, B., Shi, B., & Li, L. (2008). Investigation on interfacial interaction of flame retarded and glass fiber reinforced PA66 composites by IGC/DSC/SEM. Polymer (Guildf). 49, 1049–1055. https://doi.org/10.1016/j.polymer.2007.12.037.

Jay, J.M. (2005). Microbiologia de alimentos, 6th ed. Porto Alegre.

Jayas D.S. A4 - Jeyamkondan, S., D.S.A.-J. (2002). Modified atmosphere storage of grains meats fruits and vegetables. Biosystems Engineering. 82, 235-251–2002 v.82 no.3.

Jesus, A. S., Blank, A. F., Alves, M. F., Arrigoni-Blank, M. F., Lima, R. N., & Alves, P. B. (2016). Influence of storage time and temperature on the chemical composition of the essential oil of Hyptis pectinata L . Poit. Revista Brasileira de Plantas Medicinais. 18, 336–340.

Jorge, N. (2013). Embalagens para alimentos, primeira. ed. Cultura academica-Universidade Estadual Paulista, São Paulo.

Kader, A. A., Zagory, D., & Kerbel, E. L. (1989). Modified Atmoshere Packaging of fruits and vegetables. Critical Reviews in Food Science and Nutrition. 28.

Kakiomenou, K., Tassou, C., & Nychas, G. (1996). Microbiological, physicochemical and organoleptic changes of shredded carrots stored under modified storage. International Journal of Food Science & Technology. 31, 359–366. https://doi.org/10.1046/j.1365-2621.1996.00349.x.

Karel, M. (1975). Protective packaging of foods., in: Fennema, O.R. (Ed.), Principles of Food Science Part II Physical Principles of Food Preservation. Marcel Dekker, New York.

Kavoosi, G., & Rowshan, V. (2013). Chemical composition, antioxidant and antimicrobial activities of essential oil obtained from Ferula assa-foetida oleo-gum-resin: Effect of collection time. Food Chemistry. 138, 2180–2187. https://doi.org/10.1016/j.foodchem.2012.11.131.

Kerry, J. P., O’Grady, M. N., & Hogan, S. A. (2006). Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Science. 74, 113–130. https://doi.org/10.1016/j.meatsci.2006.04.024.

Kim, J.-G., Yousef, A. E., & Dave, S. (1999). Application of Ozone for Enhancing the Microbiological Safety and Quality of Foods: A Review. Journal of Food Protection. 62, 1071–1087. https://doi.org/10.4315/0362-028X-62.9.1071.

Krochta, J.M. (2007). Food Packaging, in: Heldman, D.R., Lund, D.B. (Eds.), Handbook of Food Engineering. CRC Press, Taylor & Francis Group, Boca Raton, FL.

Lana, M. M., & Finger, F. L. (2000). Atmosfera modificada e controlada: aplicação na conservação de produtos hortícolas. EMBRAPA.

Langlais, B., Reckhow, D.A., & Brink, D.R. (Eds.) (1991). Ozone in water treatment: application and engineering., 1st ed. CRC Press LLC, Paris.

Lima, M. R. F. de, Luna, J. de S., Santos, A. F. dos, Andrade, M. C. C. de, Sant’ana, A. E. G., Genet, J. -P., Marquez, B., Neuville, L., & Moreau, N. (2006). Anti-bacterial activity of some Brazilian medicinal plants. Ethnopharmacology. 105, 137–147.

Linssen, J. P. H., & Roozen, J. P. (1994). Food flavour and packaging interactions, in: Mathlouthi, M. (Ed.), Food Packaging and Preservation. Blackie Academic and Professional, New York, pp. 48 – 61.

Mahajan, P. V, Caleb, O.J., Singh, Z., Watkins, C.B., & Geyer, M. (2014). Postharvest treatments of fresh produce. Philosophical Transactions of the Royal Society. A372: 20130309. https://doi.org/10.1098/rsta.2013.0309.

Mangaraj, S., Goswami, T. K., & Mahajan, P. V. (2009). Applications of Plastic Films for Modified Atmosphere Packaging of Fruits and Vegetables: A Review. Food Engineering Reviews. 1, 133–158. https://doi.org/10.1007/s12393-009-9007-3.

Mantilla, S. P. S., Santos, É. B., Vital, H. de C., Mano, S. B., & Franco, R. M. (2010). Atmosfera modificada e irradiação: métodos combinados de conservação e inocuidade alimentar. Revista Científica Eletrônica de Medicina Veterinária. 8, 23.

March, K. S. (2001). Looking at packaging in a new way to reduce food losses. Food Technology. 55, 48–52.

Masand, S., Madan, S., & Balian, S.K. (2014). Modern concept of storage and packaging of raw herbs used in ayurveda. International Journal of Research in Ayurveda and Pharmacy. https://doi.org/10.7897/2277-4343.05249.

Mattos, L. M., Moretti, C. L., & da Silva, E. Y. Y. (2013). Effects of modified atmosphere packaging on quality attributes and physiological responses of fresh-cut crisphead lettuce. CyTA - Journal of. Food. 11, 392–397. https://doi.org/10.1080/19476337.2013.777124.

Mayuoni-Kirshinbaum, L., Daus, A., & Porat, R. (2013). Changes in sensory quality and aroma volatile composition during prolonged storage of ‘Wonderful’ pomegranate fruit. International Journal of Food Science & Technology. 48, 1569–1578.

Mujumdar, A. S., & Law, C. L. (2010). Drying Technology: Trends and Applications in Postharvest Processing. Food Bioprocess Technology. 3, 843–852. https://doi.org/10.1007/s11947-010-0353-1.

Paci, M., & La Mantia, F.P. (1999). Influence of small amounts of polyvinylchloride on the recycling of polyethylene terephthalate. Polymer Degradation and Stability. 63, 11–14.

Pantazi, D., Papavergou, A., Pournis, N., Kontominas, M. G., & Savvaidis, I. N. (2008). Shelf-life of chilled fresh Mediterranean swordfish (Xiphias gladius) stored under various packaging conditions: Food Microbiology. 25, 136–143. https://doi.org/10.1016/j.fm.2007.06.006.

Park, B. K. J., Park, K. J., Alonso, L. F. T., Cornejo, F. E. P., Maria, I., & Del Fabbro, I. M. (2014). Secagem: fundamentos e equações. Revista Brasileira de Produtos Agroindustriais 16, 93–126.

Parry, R.T. (1993). Introduction., in: Springer Science & Business Media (Ed.), Principles and Applications of Modified Atmosphere Packaging of Food. Blackie Academic & Professional, London, pp. 1–18.

Patocka, J., & Almeida, J.D. (2017). Brazilian pepper tree: review of pharmacology. Mil. Med. Sci. Lett. 86, 32–41.

Patsias, A., Chouliara, I., Badeka, A., Savvaidis, I. N., & Kontominas, M. G. (2006). Shelf-life of a chilled precooked chicken product stored in air and under modified atmospheres: microbiological, chemical, sensory attributes. Food Microbiology. 23, 423–429. https://doi.org/10.1016/j.fm.2005.08.004.

Paul, D. R., & Clarke, R. (2002). Modeling of modified atmosphere packaging based on designs with a membrane and perforations. Journal of Membrane Science. 208, 269–283. https://doi.org/10.1016/S0376-7388(02)00303-4.

Peter, K. V. (2006). Handbook of Herbs and Spices. CRC Press, New Yok.

Phillips, C. A. (1996). Review: Modified Atmosphere Packaging and its effects on the microbiological quality and safety of produce. International Journal of Food Science & Technology. 31, 463–479. https://doi.org/10.1046/j.1365-2621.1996.00369.x.

Robertson, G. L. (2006). Food Packaging—Principles and Practice. CRC Press, Taylor & Francis Group, Boca Raton.

Romão, W., Spinacé, M. A. S., & Paoli, M. De. (2009). Poli ( Tereftalato de Etileno ), PET : Uma Revisão Sobre os Processos de Síntese , Mecanismos de Degradação e sua Reciclagem. Polímeros Ciência e Tecnologia. 19, 121–132.

Rozado, A. F., Faroni, L. R. A., Urruchi, W. M. I., Guedes, R. N. C., & Paes, J. L. (2008). Aplicação de ozônio contra Sitophilus zeamais e Tribolium castaneum em milho armazenado. Revista Brasileira de Engenharia Agrícola e Ambiental. 12, 282–285. https://doi.org/10.1590/S1415-43662008000300009.

Russel, A. D., Hugo, W. B., & Avliffe, G. A. J. (Eds.). (1999). Principles and practice of disinfection, preservation and sterilization. 3rd ed. Blackwell Science, Oxford.

Saltveit, M. E. (1997). A summary of CA and MA recommendations for harvested vegetables, in: Saltveit, M.E. (Ed.), Vegetables and Ornamentals. Postharvest Horticulture Series. CA’97 Proc, Davis. 98–117.

Sarantópoulos, C., & Cofcewicz, L.S. (2016). Embalagens ativas para produtos perecíveis. Boletim de Tecnologia e Desenvolvimento de Embalagens. 28, 1–12.

Sarantópoulos, C. I. G. L., Alves, R. M. V., Coltro, L., Padula, M., Teixeira, F. G., & Moreira, C. Q. (2018). Propriedades de Barreira, in: Sarantopoulos, C.I.G.L., Teixeira, F.G. (Eds.), Embalagens Plásticas Flexíveis: Principais Polímeros e Avaliação de Propriedades. ITAL/CETEA, Campinas.

Schirmer, B. C., & Langsrud, S. (2010). A dissolving CO2 headspace combined with organic acids prolongs the shelf-life of fresh pork. Meat Science. 85, 280–284. https://doi.org/10.1016/j.meatsci.2010.01.013.

Silva, F., Casali, V. W. D., Lima, R. R., & Andrade, N. J.(1999). Qualidade pos-colheita de Achillea millefolium L., Origanum vulgare L. e Petroselinum crispum (Miller) A.W.Hill em três embalagens. Revista Brasileira de Plantas Medicinais. 2, 37–41.

Silva, F., Park, K. J., Magalhães, P. M., Martins, G. N., & Gama, E. V. S. (2013). Avaliação do teor de óleo essencial de Baccharis trimera (Less.) DC. em diferentes embalagens durante o armazenamento. Revista Brasileira de Plantas Medicinais. 15, 54–58. https://doi.org/10.1590/S1516-05722013000100007.

Singh, R. P., & Heldman, D. R., (2009). Introduction to Food Engineering, Fourth Edi. ed. Academic Press, San Diego.

Singh, R.P., & Heldman, D.R. (2001). Introduction to food engineering, 4th ed. Academic Press.

Sivertsvik, M., Jeksrud, W.K., & Rosnes, J. T. (2002). A review of modified atmosphere packaging of fish and fishery products - significance of microbial growth, activities and safety. International Journal of Food Science & Technology. 37, 107–127. https://doi.org/10.1046/j.1365-2621.2002.00548.x.

Soccol, M.C.H., & Oetterer, M. (2003). Use of modified atmosphere in seafood preservation. Brazilian Archives of Biology and Technology. 46, 569–580. https://doi.org/10.1590/S1516-89132003000400011.

Sourestani, M. M., Malekzadeh, M., & Tava, A. (2014). Influence of drying, storage and distillation times on essential oil yield and composition of anise hyssop [Agastache foeniculum (Pursh.) Kuntze]. Journal of Essential Oil Research. 26, 177–184. https://doi.org/10.1080/10412905.2014.882274.

Stannett, V., Szwarc, M., Bhargava, R. L., Meyers, J. A., Myers, A. W., & Rogers, C. E. (1962). Permeability of Plastic Films and coated Papers to Gas and Vapors. TAPPI Monograph Series.

SUS, Sistema Único De Saúde. (2016). Uso de fitoterápicos e plantas medicinais cresce no SUS. URL <http://portalsaude.saude.gov.br/index.php/cidadao/principal/agencia-saude/24205-uso-de-fitoterapicos-e-plantas-medicinais-cresce-no-sus> (accessed 20.5.17).

WHO, World Health Organization. (2014). WHO traditional medicine strategy. WHO Press, Geneva.

Wolfe, S. H. (1980). Use of CO2 and CO2 enriched atmospheres for meats, fish, and produce. European Food Research and Technology. 29, 55–58.

Wright, A. H., Delong, J. M., Arul, J., & Prange, R. K. (2015). The trend toward lower oxygen levels during apple ( Malus × domestica Borkh) storage. Journal of Horticultural Science and Biotechnology. 90, 1–13. https://doi.org/10.1080/14620316.2015.11513146.

Wysok, B., Uradziński, J., & Gomółka-Pawlicka, M. (2006). Ozone as an alternative disinfectant. Polish Journal of Food and Nutrition Sciences. 56, 3–8.

Yam, K. L., Paik, J. S., & Lai, C. C. (1999). Food Packaging, Part 1. General Considerations, in: Francis, F.J. (Ed.), Encyclopedia of Food Science & Technology. Wiley-Interscience.

Yasuda, H., Stannett. (1975). Permeability Coefficients, in: Brandrup, J., Immergut, E.H., Mcdowell, W. (Eds.), Polymer Handbook. Wiley-Interscience, New York.

Yuan, J. T. C. (2003). Modified Atmosphere Packaging for Shelf-Life Extension, in: Novak, J.S., Sapers, G.M., Juneja, V.K. (Eds.), Microbial Safety of Minimally Processed Foods. CRC Press, Boca Raton, FL. 205–220.

Conflict of Interest and Ethical Standards

All authors declare no conflict of interest, and this article does not contain studies with human or animal participants performed by any of the authors.

Acknowledgments

The authors would like to thank the Coordenação de Aperfeiçoamento Pessoal de Nível Superior – CAPES (Coordination for the Improvement of Higher Education Personnel) for the financial support (Finance Code 001) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (National Council for Scientific and Technological Development) – Brazil, for funding the master's scholarship (Process 132423/2019-7).

References

Abeles, F. B., Morgan, P. W, & Saltveit, M. E. (1997). Ethylene in plant biology. (2a ed.), Academic Press. 414 p.

Andrade, P. F. S. (2020). Prognóstico 2020: Fruticultura análise da conjuntura. DERAL: departamento de Economia Rural, Governo do Paraná. 7 p. http://www.agricultura.pr.gov.br/sites/default/arquivos_restritos/files/documento/2020-01/fruticultura_2020.pdf.

Anuário Brasileiro de Horti&Fruticultura 2020. (2020). Santa Cruz do Sul: Editora Gazeta Santa Cruz. 96 p. http://www.editoragazeta.com.br/sitewp/wp-content/uploads/2020/05/HORTIFRUTI_2020.pdf.

Benevides, S. D., Ramos, A. M. & Perez, R. (2007). Necessidade da implementação da rastreabilidade como ferramenta de qualidade para a industrialização da manga na Zona da Mata mineira. Revista Brasileira Agrociência, Pelotas, 13, (1), 19-24.

Benevides, S.D., Ramos, A. M., Stringheta, P. C. & Castro, V. C. (2008). Qualidade da manga e polpa da manga Ubá. Ciência e Tecnologia de Alimentos, 28, (3), 571-578.

Brasil. (2000). Ministério da Agricultura e do Abastecimento. Leis, Decretos, etc. Instrução Normativa Nº 1, de 7 de janeiro de 2000. Regulamento técnico geral para fixação dos padrões de identidade e qualidade para polpa de frutas. Diário Oficial da União, Nº 6, Brasília, DF, 10 janeiro de 2000. Seção 1, 54-58.

Brasil. (2018). Ministério da Agricultura Pecuária e Abastecimento. Secretária de Defesa e Agropecuária. Instrução Normativa n° 37 de 1° de outubro de 2018. Regulamento técnico de padrões de identidade e qualidade de sucos de frutas e polpas de frutas. Diário Oficia da República Federativa do Brasil, Brasília, DF, 08 de outubro 2018. Seção 1, 39-77.

Chitarra, M. I. F. & Chitarra, A. B. (2005). Pós-colheita de frutas e hortaliças – fisiologia e manuseio. (2a ed.), Ed.UFLA. 785 p.

FAO-Food and Agriculture Organization of the United Nations. (2017). FAOSTAT. http://www.fao.org/faostat/en/#home.

Ferreira, D. F. (2015). SISVAR - Sistema de análise de variância. Versão 5.6. Lavras-MG: UFLA.

Ferreira, M. D. & Spricigo, P. C. (2017). Colorimetria: Princípios e aplicações na agricultura. In: Instrumentação em frutas e hortaliças. 1. ed. São Carlos: Embrapa Instrumentação, 209–220.

Fuchs, Y., Zauberman, G., Yanko, U. & Homsky, S. (1975). Ripening of mango fruits with ethylene. Tropical Science, Whurr, 17, 211-216.

Gonçalves, N.B., Carvalho, V. D., Gonçalves, J. R. A., Coelho, S. R. M. & Silva, T. G. (1998). Características físicas e químicas dos frutos de cultivares de mangueira (Mangífere indica L). Ciência e Agrotecnologia, 2, (1), 72-78.

IAL – Instituto Adolfo Lutz. (2008). Métodos físico-químicos para análise de alimentos. (4a ed.), Versão eletrônica. São Paulo: Instituto Adolfo Lutz. 1020 p. http://www.ial.sp.gov.br/ial/publicacoes/livros/metodos-fisico-quimicos-para-analise-de-alimentos.

Kader, A. A. (2002). Quality parameters of fresh-cut fruit and vegetable products. In: O. Lamikanra (Ed.). Fresh-cut fruits and vegetables. Science Technology and Market. Boca Raton, Fl. CRC Press.

Linhares, F. R. & Do Carmo, F. L. (2018). Uma abordagem do cenário geral de sucos industrializados por meio das patentes no contexto da alimentação saudável. Cadernos de Prospecção, 11, (5), 1698.

Lizada, C. Mango. (2012). In Seymour, Graham B., Taylor, Jane E., Tucker, Gregory, A. (Ed.). Biochemistry of fruit ripening. Springer Science & Business Media, Cap. 8, 255-290.

Manica, I., Icuma, I. M., Malavolta, E., Ramos, V. H. V., Oliveira, J. M. E. O, Cunha, M. M. & Junqueira, N. T. V. (2001). Manga: Tecnologia, produção, agroindústria e exportação. Porto Alegre: Cinco Continentes. 671 p.

Motta, J. D., Queiroz, A. J. M., Figueirêdo, R. M. F. & Sousa, K. S. M. (2015). Índice de cor e sua correlação com parâmetros físicos e físico-químicos de goiaba, manga e mamão. Comunicata Scientiae, 6, (1), 74-82.

Oliveira, E. N. A, Feitosa, B. F & Souza, R. L. A. (2018). Tecnologia e processamento de frutas: doces, geleias e compotas. Editora IFRN, Natal, 315 p. https://memoria.ifrn.edu.br/bitstream/handle/1044/1664/Tec.%20e%20Proc.%20de%20Fruta%20s%20-%20E-Book.pdf?sequence=1&isAllowed=y.

Ramos, A. M., Couto, F. A. A., Rezende, P. M., Lelis, F. M. V., Benevides, S. D. & Perez, R. (2005). Manga ‘Ubá’: Boas práticas agrícolas para produção destinada à agroindústria. UFV. 64 p.

Roizen, M. F. & Puma, J. L. (2001). A dieta da idade verdadeira.: Campus, 328 p.

Silva, D. F. P, Salomão, L. C. C, Siqueira, D. L., Cecon, P. R. & Struiving, T. B. (2012). Amadurecimento de manga Ubá com etileno e carbureto de cálcio na pós-colheita. Ciência Rural, 42, (2), 213-220. https://www.scielo.br/pdf/cr/v42n2/a3712cr5102.pdf.

Silva, C. S. (2021). Determinação do ponto de colheita da manga ‘Ubá’ (Mangifera indica L. var. Ubá) pela análise de suas propriedades físico-químicas. Dissertação (Mestrado em Engenharia Agrícola) – Universidade Federal de Viçosa, Viçosa. https://www.locus.ufv.br/bitstream/123456789/28275/1/texto%20completo.pdf.

.

Silva, S. N., Silva, P. B., Silva, R. M., Silva, L. P. F. R., Barroso, A. J. R., Almeida, F. D. A. C. & Gomes, J. P. (2019). Composição físico-química e colorimétrica da polpa de frutos verdes e maduros de Cereus jamacaru. Magistra, Cruz das Almas, 30, 11-17.

Published

02/06/2022

How to Cite

LISBOA, C. F.; MELO , E. de C. .; SPEROTTO , N. C. Z. .; ÁVILA, M. B. R. .; SILVA, L. C. da .; ALEMAN, C. C. .; CARNEIRO , J. C. de S. .; COELHO, A. P. de F. .; SILVA , C. S. da . Packaging and storage of medicinal plants. Research, Society and Development, [S. l.], v. 11, n. 7, p. e50911724813, 2022. DOI: 10.33448/rsd-v11i7.24813. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24813. Acesso em: 6 jul. 2022.

Issue

Section

Agrarian and Biological Sciences