Free software navigation and 3D printing: basic principles and simulations in Oral and Maxillofacial Surgery
DOI:
https://doi.org/10.33448/rsd-v11i1.25324Keywords:
Printing, Three-Dimensional; Virtual Reality; Surgery, oral.Abstract
The use of computer systems allows professionals to continue education, study and virtual surgical planning, and obtain physical objects directly from the generated data. The images obtained from computed tomography can be manipulated using free software. Rapid prototyping is widely used in Oral and Maxillofacial Surgery and Traumatology, allowing for increased surgical predictability, reducing the time associated with the procedure and consequently resulting in lower patient morbidity, lowering the costs associated with health care. This paper describes the protocol for the use of rapid prototyping techniques applied to patients with treatment needs in the specialty of Oral and Maxillofacial Surgery and Traumatology, at the tertiary level of health care, linked to the Unified Health System, in a teaching hospital from the south of Brazil. It also explores parameters related to image acquisition by computed tomography, structural characteristics of the software used, equipment and dimensional quality criteria of the materials used. The adoption of these technologies improves the quality of care and must be encouraged within the Unified Health System.
References
Arvier, J. F., Barker, T. M., Yau, Y. Y., D'Urso, P. S., Atkinson, R. L., & McDermant, G. R. (1994). Maxillofacial biomodelling. The British journal of oral & maxillofacial surgery, 32(5), 276–283.
Assis, G. M., Silva, S. C., Moraes, P., Amaral, J. I., Silva, J. A., & Germano, A.R. (2010). Auxílio da prototipagem na reconstrução mandibular: caso clínico. Rev. Cir. Traumatol. Buco-Maxilo-Fac., Camaragibe, 10, 3.
Attene, M., Campen, M., & Kobbelt, L. P. (2013). Polygon mesh repairing: An application perspective. ACM Comput. Surv., 45, 15:1-15:33.
Bagaria, V., & Chaudhary, K. (2017). A paradigm shift in surgical planning and simulation using 3Dgraphy: Experience of first 50 surgeries done using 3D-printed biomodels. Injury, 48(11), 2501–2508.
Calvo-Haro, J. A., Pascau, J., Asencio-Pascual, J. M., Calvo-Manuel, F., Cancho-Gil, M. J., Del Cañizo López, J. F., Fanjul-Gómez, M., García-Leal, R., González-Casaurrán, G., González-Leyte, M., León-Luis, J. A., Mediavilla-Santos, L., Ochandiano-Caicoya, S., Pérez-Caballero, R., Ribed-Sánchez, A., Río-Gómez, J., Sánchez-Pérez, E., Serrano-Andreu, J., Tousidonis-Rial, M., Vaquero-Martín, J., & Perez-Mañanes, R. (2021). Point-of-care manufacturing: a single university hospital's initial experience. 3D printing in medicine, 7(1), 11.
Dalmazo, J., Elias Júnior, J., Brocchi, M. A. C., Costa, P. R., & Azevedo-Marques, P. M. de. (2010). Otimização da dose em exames de rotina em tomografia computadorizada: estudo de viabilidade em um Hospital Universitário. Radiologia Brasileira, 43(4), 241–248.
Dovales, A. C. M., de Souza, A. A., & Veiga, L. H. S. (2016). Tomografia computadorizada no Brasil: frequência e padrão de uso em pacientes internados no Sistema Único de Saúde (SUS). Revista Brasileira De Física Médica, 9(1), 11–14.
D'Urso, P. S., Atkinson, R. L., Lanigan, M. W., Earwaker, W. J., Bruce, I. J., Holmes, A., Barker, T. M., Effeney, D. J., & Thompson, R. G. (1998). Stereolithographic (SL) biomodelling in craniofacial surgery. British journal of plastic surgery, 51(7), 522–530.
Eijnatten, M. van, van Dijk, R., Dobbe, J., Streekstra, G., Koivisto, J., & Wolff, J. (2018). CT image segmentation methods for bone used in medical additive manufacturing. Medical engineering & physics, 51, 6–16.
Fogaça, A., Dreyer, J. W., Júnior, A. N., Moraes, J. F., & Oliveira, M. G. (2011). Dimensional accuracy of select laser sintering and three-dimensional printing biomodels after autoclaving: a preliminary descriptive study. Archives of Oral Research, 7(1), 27-33.
Ganry, L., Hersant, B., Bosc, R., Leyder, P., Quilichini, J., & Meningaud, J. P. (2018). Study of medical education in 3D surgical modeling by surgeons with free open-source software: Example of mandibular reconstruction with fibula free flap and creation of its surgical guides. Journal of stomatology, oral and maxillofacial surgery, 119(4), 262–267.
Gerstle, T. L., Ibrahim, A., Kim, P. S., Lee, B. T., & Lin, S. J. (2014). A plastic surgery application in evolution: three-dimensional printing. Plastic and Reconstructive Surgery, 133(2), 446–451.
Ibrahim, D., Broilo, T. L., Heitz, C., de Oliveira, M. G., de Oliveira, H. W., Nobre, S. M., Dos Santos Filho, J. H., & Silva, D. N. (2009). Dimensional error of selective laser sintering, three-dimensional printing and PolyJet models in the reproduction of mandibular anatomy. Journal of Cranio-Maxillo-Facial Surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery, 37(3), 167–173.
Jacobs, S., Grunert, R., Mohr, F. W., & Falk, V. (2008). 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interactive Cardiovascular and Thoracic Surgery, 7(1), 6–9.
Ju, T. (2009) Fixing Geometric Errors on Polygonal Models: A Survey. J. Comput. Sci. Technol. 24, 19–29.
Kim, G., & Oh, Y.T. (2008). A benchmark study on rapid prototyping processes and machines: Quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222, 201 - 215.
Kim, S. Y., Shin, Y. S., Jung, H. D., Hwang, C. J., Baik, H. S., & Cha, J. Y. (2018). Precision and trueness of dental models manufactured with different 3-dimensional printing techniques. American Journal of Orthodontics and Dentofacial Orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 153(1), 144–153.
Lechuga, L., & Weidlich, G. A. (2016). Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities. Cureus, 8(9), e778.
Li, Z., Li, Z., Xu, R., Li, M., Li, J., Liu, Y., Sui, D., Zhang, W., & Chen, Z. (2015). Three-dimensional printing models improve understanding of spinal fracture--A randomized controlled study in China. Scientific reports, 5, 11570.
Mehrotra, D., & Markus, A. F. (2021). Emerging simulation technologies in global craniofacial surgical training. Journal of Oral Biology and Craniofacial Research, 11(4), 486–499.
Meshmixer. (2021). Autodesk. https://www.meshmixer.com/
Meurer, E., Oliveira, M. G., Meurer, M. I., Silva, J. V. L., Bárbara, A. S., & Heitz C. (2003). Biomodelos de Prototipagem Rápida em CTBMF. Rev. Bras. Cir. Periodontia, Curitiba, 1(3), 172-180.
Meurer, M. I., Meurer, E., Silva, J. V. L., Bárbara A. S., Nobre, L. F., Oliveira, M. G., & Silva, D.M. (2008). Aquisição e manipulação de imagens por tomografia computadorizada da região maxilofacial visando à obtenção de protótipos biomédicos. Radiologia Brasileira [online]. 41 (1), 49-54.
Mitsouras, D., Liacouras, P., Imanzadeh, A., Giannopoulos, A. A., Cai, T., Kumamaru, K. K., George, E., Wake, N., Caterson, E. J., Pomahac, B., Ho, V. B., Grant, G. T., & Rybicki, F. J. (2015). Medical 3D Printing for the Radiologist. Radiographics: a review publication of the Radiological Society of North America, Inc, 35(7), 1965–1988.
Mohan Pandey, P., Venkata Reddy, N., & Dhande, S. G. (2003). Slicing procedures in layered manufacturing: a review. Rapid Prototyping Journal, 9(5), 274–288.
Mothes, F. C., Britto, A., Matsumoto, F., Tonding, M., & Ruaro, R. (2018). Application of three-dimensional prototyping in planning the treatment of proximal humerus bone deformities. Revista Brasileira de Ortopedia, 53(5), 595–601.
Oliveira, A. I. A. de, Assis, G. J. A. de, & Garotti, M. F. (2014). Tecnologias no ensino de crianças com paralisia cerebral. Revista Brasileira de Educação Especial, 20(1), 85–102.
Petropolis, C., Kozan, D., & Sigurdson, L. (2015). Accuracy of medical models made by consumer-grade fused deposition modelling printers. Plastic surgery (Oakville, Ont.), 23(2), 91–94.
Puricelli, E. (2014). Técnica anestésica, exodontia e cirurgia dentoalveolar-Série ABENO-Odontologia Essencial-Parte clínica. Porto Alegre: Editora Artes Medicas.
Rengier, F., Mehndiratta, A., von Tengg-Kobligk, H., Zechmann, C. M., Unterhinninghofen, R., Kauczor, H. U., & Giesel, F. L. (2010). 3D printing based on imaging data: review of medical applications. International Journal of Computer Assisted Radiology and Surgery, 5(4), 335–341.
Roça, G. B., Foggiatto, J. A., Ono, M. C., Ono, S. E., & da Silva Freitas, R. (2013). Comparison of orbital volume obtained by tomography and rapid prototyping. The Journal of craniofacial surgery, 24(6), 1877–1881.
Roman, N., Cojocaru, D., Coman, C., Repanovici, A., Bou, S. F., & Miclaus, R. S. (2021). Materials for Respiratory Masks in the Context of COVID 19 Pandemic. Materiale Plastice, 57(4), 236–247.
Salmi, M., Paloheimo, K. S., Tuomi, J., Wolff, J., & Mäkitie, A. (2013). Accuracy of medical models made by additive manufacturing (rapid manufacturing). Journal of Cranio-maxillo-facial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery, 41(7), 603–609.
Sepahi, M. T., Abusalma, H., Jovanovic, V., & Eisazadeh, H. (2021). Mechanical Properties of 3D-Printed Parts Made of Polyethylene Terephthalate Glycol. Journal of Materials Engineering and Performance, 30(9), 6851–6861.
Shui, W., Zhou, M., Chen, S., Pan, Z., Deng, Q., Yao, Y., Pan, H., He, T., & Wang, X. (2017). The production of digital and printed resources from multiple modalities using visualization and three-dimensional printing techniques. International Journal of Computer Assisted Radiology and Surgery, 12(1), 13–23.
Silva, D. N., Gerhardt de Oliveira, M., Meurer, E., Meurer, M. I., Lopes da Silva, J. V., & Santa-Bárbara, A. (2008). Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction. Journal of cranio-maxillo-facial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery, 36(8), 443–449.
Stansbury, J. W., & Idacavage, M. J. (2016). 3D printing with polymers: Challenges among expanding options and opportunities. Dental Materials: official publication of the Academy of Dental Materials, 32(1), 54–64.
Steenberghe, D. van, Naert, I., Andersson, M., Brajnovic, I., Cleynenbreugel, J. van, & Suetens, P. (2002). A custom template and definitive prosthesis allowing immediate implant loading in the maxilla: a clinical report. The International Journal of Oral & Maxillofacial Implants, 17(5), 663–670.
Tramontano, M., & Junior, A. P. (2015). Ressignificando o modelo físico: impressão 3D e ensino de projeto de arquitetura. Anais do XIX Congresso Da Sociedade Ibero-Americana de Gráfica Digital 2015.
Van den Broeck, J., Vereecke, E., Wirix-Speetjens, R., & Vander Sloten, J. (2014). Segmentation accuracy of long bones. Medical engineering & physics, 36(7), 949–953.
Volpato, N. (2007). Integração da prototipagem rápida com o processo de desenvolvimento de produto. In: Prototipagem rápida: tecnologias e aplicações. Edgard Blucher.
Whyms, B. J., Vorperian, H. K., Gentry, L. R., Schimek, E. M., Bersu, E. T., & Chung, M. K. (2013). The effect of computed tomographic scanner parameters and 3-dimensional volume rendering techniques on the accuracy of linear, angular, and volumetric measurements of the mandible. Oral surgery, Oral Medicine, Oral Pathology and Oral Radiology, 115(5), 682–691.
Zeller, A. N., Neuhaus, M. T., Fresenborg, S., Zimmerer, R. M., Jehn, P., Spalthoff, S., Gellrich, N. C., & Dittmann, J. A. (2021). Accurate and cost-effective mandibular biomodels: a standardized evaluation of 3D-Printing via fused layer deposition modeling on soluble support structures. Journal of Stomatology, Oral and Maxillofacial Surgery, 122(4), 355–360.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Leandro Rios Guidolin; André Frotta Müller; Mateus Samuel Tonetto; Amália Pletsch Furlanetto; Edela Puricelli; Alexandre Silva de Quevedo; Deise Ponzoni
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.