Experimental evaluation of the efficiency of boron in controlling the reactivity of water-cooled nuclear reactors

Authors

DOI:

https://doi.org/10.33448/rsd-v11i2.25406

Keywords:

Nuclear reactor; Triga; Boron; Chemical control; Reactivity; Neutrons.

Abstract

Nuclear reactors are devices in which chain fission reactions are obtained in a controlled manner. The unit that this control represents is the reactivity. By inserting or removing neutron absorber bars the neutron flux is controlled, thereby determining the power levels. Already for long-term control, chemicals with a high absorption cross section are dissolved in the cooling water of the pressurized water reactor (PWR). Boric acid is used for this purpose, due to the B-10 isotope. The purpose of this work was to presents the effectiveness of boron in controlling the reactivity of nuclear reactors cooled to light water. Samples with different concentrations of boric acid were inserted into the IPR-R1 Triga nuclear reactor core from the Development Center of Nuclear Technology (CDTN). Variations of reactivities were evaluated using the Static Reactivity Null Method. The pH and electrical conductivity measurements were performed on the solutions to characterize them. The results obtained made it possible to simulate B-10 consumption during reactor operation and its effect on reactivity with increasing boric acid concentration. The pH values had a very small increase after irradiation. However, the conductivity of the samples had minor changes. As a result of this research, a correlation between various concentrations of boric acid and reactivity of the reactor was raised.

References

Byrne, J. (1994). Neutrons, Nuclei and Matter: An Exploration of the Physics of Slow Neutrons. New York: Ed. Dover.

Giada, M. R. (2005). Determinação da reatividade do veneno queimável de Al2O3-B4C em função da sua concentração no reator IPEN/MB-01. 84 p. Dissertação (Mestrado em Ciência na Área de Tecnologia Nuclear - Reatores) - Instituto de Pesquisas Energéticas e Nucleares, São Paulo.

Gomes, K. (2008). Controle preditivo neural aplicado ao processo de criticalidade da usina nuclear de Angra II. 193 p. Dissertação (Mestrado em Ciências em Engenharia Nuclear) - Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro.

IAEA - International Atomic Energy Agency. (1996). Processing of nuclear power plant waste streams containing boric acid. Vienna: IAEA Nuclear Energy Series, (IAEA-TECDOC-911).

IAEA – International Atomic Energy Agency. (2013). Water Chemistry and Clad Corrosion/Deposition Including Fuel Failures. IAEA-TECDOC-CD-1692. Proceedings of a Technical Meeting held in Kiev, Ukraine.

IAEA - International Atomic Energy Agency. (2011). Good Practices for Water Quality Management in Research Reactors and Spent Fuel Storage Facilities. NP-T-5.2. Vienna.

IAEA - International Atomic Energy Agency. (2010). Recommended Practices for Water Quality Management in Research Reactors & Spent Fuel Storage Facilities. IAEA Nuclear Energy Series.

IAEA – International Atomic Energy Agency. (2017). Physics and Kinetics of TRIGA Reactors. https://ansn.iaea.org/Common/documents/Training/TRIGA%20Reactors%20(Safety%20and%20Technology)/chapter2/physics221.htm.

ISO - International Organization of Standardization. (2008). Guide to the Expression of Uncertainty in Measurement, Geneva.

Lamarsh, J. R.; Baratta, A. J. (2018). Introduction to Nuclear Engineering. 4th Edition. Pearson. Hoboken, New Jersey.

Mesquita, A.Z. (2021). Reatores Nucleares - Introdução à Energia do Núcleo. Programa de Pós-Graduação em Ciência e Tecnologia das Radiações, Minerais e Materiais do Centro e Desenvolvimento da Tecnologia Nuclear. 147p. Belo Horizonte.

Mesquita, A.Z.; Palma, D.A.P; Rezende, H.C.; Oliveira, A.M.; Morghi, Y.; Ribeiro, P.A.M.; Alcântara e Alves; Peconick, D.G.O. (2021a). Power Measurement Methodologies for Pool Nuclear Research Reactors. Latin American Journal of Development, v. 3, p. 882-892, 2021. DOI: 10.46814/lajdv3n2-032.

Mesquita, A.Z.; Rezende, H.C.; Rodrigues, R.R.; Almeida, V.F.; Palma, D.A.P. (2021b). Experimental evaluation of natural convection in the IPR-R1 Triga research reactor at 264 kW and 105 kW. Brazilian Journal of Radiation Sciences, v. 9, p. 1-15. DOI: 10.15392/bjrs.v9i2B.1256.

Nordmann, F. (2004). Aspects on chemistry in French nuclear power plants. 14th International Conference on the Properties of Water and Steam in Kyoto, p. 521–530,.

Oliveira, A.M.; Mesquita, A.Z.; Reis, I.C. (2021). Proposta de Investigação Experimental do Desempenho Termo-Hidraulico de Nanofluidos na Refrigeração de Reatores Nucleares à Água Leve. In: Antonella Carvalho de Oliveira. (Org.). Projeto, Análise e Otimização na Área das Engenharias. 1ed. Ponta Grossa (PR): Atena Editora. v. 1, p. 124-130.

Pastina, B.; Isabey, J.; Hickel, B. (1999). The influence of water chemistry on the radiolysis of the primary coolant water in pressurized water reactors. Journal of Nuclear Materials, v. 264, n. July 1998, p. 309–318. DOI: 10.1016/S0022-3115(98)00494-2.

Reis, I. C. (2017). Avaliação Teórico-Experimental da Influência do Boro na Reatividade do Reator Triga IPR-R1. 68 p. Dissertação (Mestrado em Ciência e Tecnologia das Radiações, Minerais e Materiais). Centro de Desenvolvimento da Tecnologia Nuclear. Belo Horizonte.

Reis, I. C.; Monteiro, R.P.G.; Mesquita, A.Z. (2016c). Rotina de determinação do pH e da condutividade de amostras de água borada antes e após irradiação no tubo central do reator TRIGA IPR-R1. Doc. Nº: R001.20.RE.002. Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/Cnen). Belo Horizonte.

Reis, I. C.; Souza, R.M.G.P.; Mesquita, A.Z.; Monteiro, R.P.G. (2016a). Procedimento Experimental para Determinação do Efeito do Boro na Reatividade do Reator Nuclear de Pesquisa TRIGA IPR-R1. Centro de Desenvolvimento da Tecnologia Nuclear. NI-SETRE 05/2016. Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/Cnen. Belo Horizonte.

Reis, I.C.; Monteiro, R.P.G.; Mesquita, A.Z. (2016b). Rotina do preparo de soluções de ácido bórico para irradiação no reator TRIGA IPR-R1. (Doc. Nº: R001.20.RE.001. Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/Cnen). Belo Horizonte.

Rodrigues, R.R.; Mesquita, A.Z.; Palma, D.A.P. (2018). Designing a system to detect leaking in fuel elements in Brazilian Triga research reactor. International Journal of Nuclear Energy, Science and Technology (Print), v. 12, p. 239. DOI: 10.1504/IJNEST.2018.095691.

Scott, P. M.; Combrade, P. (2006). Corrosion in Pressurized Water Reactor. ASM Handbook – Corrosion Environment and Industries. Volume 13C, p 36A. D. Cramer and B. S. Covino, Jr. Eds, ASM, Metals Park, OH.

Souza, R. M. G. P.; Mesquita, A. Z. (2008). Procedimentos de Testes Neutrônicos e Termohidráulicos no Reator TRIGA IPR-R1 à 100 kW – Núcleo com 63 E.C. Belo Horizonte: Centro de Desenvolvimento da Tecnologia Nuclear, Nota Interna (NI-TR-03/08).

Fylonych, Y.; Zaporozhan, V.; Balashevskyi, O.; Merkotan, K. (2021). Analysis of the Influence of Nuclear Fuel Burnup on the 16N Formation Rate in the Primary Coolant Circuit of WWER-1000 Reactor. Nuclear Physics and Atomic Energy. Vol. 22 No. 1. DOI: 10.15407/jnpae2021.01.048.

Published

18/01/2022

How to Cite

MESQUITA, A. Z. .; OLIVEIRA, A. M. de .; GONÇALVES, L. M. .; REIS, I. C. Experimental evaluation of the efficiency of boron in controlling the reactivity of water-cooled nuclear reactors . Research, Society and Development, [S. l.], v. 11, n. 2, p. e8211225406, 2022. DOI: 10.33448/rsd-v11i2.25406. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25406. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings