Nutritive and Bioactive Properties of Araçá (Psidium cattleianum Sabine)
DOI:
https://doi.org/10.33448/rsd-v11i1.25424Keywords:
Araçá red; Yellow araçá; Antioxidants; Application.Abstract
Consumers are increasingly looking for foods that have compounds that are beneficial to health, also called bioactive or photochemical, which are substances derived from the secondary metabolism of vegetables. Brazil has one of the greatest biodiversity in the world, with unexplored sources of native fruits with high levels of bioactive compounds. Among these fruits, the araçá (Psidium cattleianum Sabine) stands out. Araçá, in addition to its high nutritional value, has significant amounts of phenolic compounds, with epicatechin and gallic acid as its main components, unsaturated fatty acids and carotenoids. For presenting these characteristics, it is being considered a promising plant for the pharmaceutical and food industry due to its potential application as a herbal and functional food, among others. In this sense, this work aims to present a literature review on araçá and its benefits.
References
Alseekh, S., Souza P. L., Benina, M., & Fernie, R. A. (2020). The style and substance of plant flavonoid decoration: towards defining both structure and function. Phytochemistry, 174, 112347.
Amarante, C. V. T., Steffens, C. A., & Espíndola, B. P. (2009). Preservação da qualidade pós-colheita de araçá-vermelho através do tratamento com 1-metilciclopropeno e do acondicionamento em embalagens plásticas sob refrigeração. Rev. Bras. Fruticultura, 31(4), 969-976.
Araújo, L. C. A. (2020). Frutos do bioma cerrado: avaliação da atividade antioxidante in vitro e efeitos in vivo em modelo experimental Caenorhabditis elegans. Tese de Doutorado em Biotecnologia e Biodiversidade, Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, MS, Brasil.
Bakoyiannis, I., Daskalopoulou, A., Pergialiotis, V., & Perrea, D. (2019). Phytochemicals and cognitive health: Are flavonoids doing the trick? Biomedicine & Pharmacotherapy, 109, 1488-1497.
Ballistreri, G., Fabroni, S., Romeo, V. F., Timpanaro, N., Amenta, M., & Rapisarda, P. (2019). Anthocyanins and Other Polyphenols in Citrus Genus: Biosynthesis, Chemical Profile, and Biological. In Watson, R.R (Ed.). Activity Polyphenols in Plants (chap. 13, pp. 191-215). Amsterdan: Elsevier.
Belwal, T., Singh, G., Jeandet, P., Pandeye, A., Girib, L., Ramolaf, S., Bhattb, D. I., Venskutonisg, R. P., Georgievh, I. M., Clementd, C., & Luoa, Z. (2020). Anthocyanins, multi-functional natural products of industrial relevance: Recent biotechnological advances. Biotechnology Advances, 1 (43), 107600.
Biegelmeyer, R., Andrade, J. M., Aboy, A. L., Apel, M. A., Dresch, R.R., Marin, R., Raseira, M.C., Henriques, A. T. (2011). Comparative analysis of the chemical composition and antioxidant activity of red (Psidium cattleianum) and yellow (Psidium cattleianum var. lucidum) strawberry guava fruit. Journal of Food Scince, 76 (7), C991-C996.
Bombana, V. B., Oro, G.E.D., Rigo, D., Polina, C. C., Denti, A. F., Tres, B. P., Wisniewski, M. S. W., Steffens, J., Paroul, N., Dallago, R. M., Backes, G. T., Cansian, R. L. (2021). Influence of drying on bioactive compounds and antioxidant activity of fruits of guabiju (Myrcianthes pungens). Research, Society and Development, v. 10, n. 8, e5510817024, 2021
Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Básica. Alimentos regionais brasileiros/Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Atenção Básica. 2. Ed. Brasília: Ministério da Saúde, 2015.
Carvalho, A.P.A., & Conte-Junior, C.A. (2021). Health benefits of phytochemicals from Brazilian native foods and plants: Antioxidant, antimicrobial, anti-cancer, and risk factors of metabolic/endocrine disorders control. Trends in Food Science & Technology, 111, 534-548.
Costa Amaral, S., Roux, D., Caton, F., Rinaudo, M., Barbieri, S. F., Silveira, J. L. M. (2021). Extraction, characterization and gelling ability of pectins from Araçá (Psidium cattleianum Sabine) fruits. Food Hydrocolloids, 121, 106845.
Dalla Nora, C., Danelli, D., Souza, L. F., Rios, A. D. O., Jong, E. V. De, & Flôres, S. H. (2014). Protective effect of guabiju (Myrcianthes pungens (O. Berg) D. Legrand) and red guava (Psidium cattleyanum Sabine) against cisplatin-induced hypercholesterolemia in rats. Brazilian Journal of Pharmaceutical Sciences, 50, 483-491.
Damiani, C., Vilas Boas, E. V. B., Asquieri, E. R., Lage, M. E., de Oliveira, R. A., da Silva, F. A., Pinto, D. M., Rodrigues, L. J., da Silva, E. P., & de Paula, N.R.F. (2011). Characterization of fruits from the savanna: Araça (Psidium guinnensis Sw.) and Marolo (Annona crassiflora Mart.). Ciência e Tecnologia de Alimentos, 31(3), 723-729.
Das, A. B., Goud, V. V., & Das, C. (2017). Extraction of phenolic compounds and anthocyanin from black and purple rice bran (Oryza sativa L.) Using ultrasound: A comparative analysis and hytochemical profiling. Ind. Crops Prod. 95, 332–341.
Lima, A. S., Maia, D.V., Haubert, L., Oliveira, T. L., Fiorentini, A. M., Rombaldi, C. V., & da Silva, W. P. (2020). Action mechanism of araçá (Psidium cattleianum Sabine) hydroalcoholic extract against Staphylococcus aureus. LWT - Food Science and Technology, 119, 108884.
De Souza Cardoso, J.; Oliveira, P. S., Bona, N. P., Vasconcellos, F. A., Baldissarelli, J., Vizzotto, M., Soares, M. S., Ramos, V. P., Spanevello, R. M., Lencina, C. L., Tavares, R. G., & Stefanello, F. M. (2018). Antioxidant, antihyperglycemic, and antidyslipidemic effects of Brazilian-native fruit extracts in an animal model of insulin resistance. Redox Report, 23 (1), 41-46.
Egea, M. B., Pereira-Netto, A. B., Cacho, J., Ferreira, V., & Lopez, R. (2014). Comparative analysis of aroma compounds and sensorial features of strawberry and lemon guavas (Psidium cattleianum Sabine). Food Chemistry, 164, 272-277.
Emporio Laszlo. (2021). https://www.emporiolaszlo.com.br/oleo-essencial-de-araca-rosa.html.
Frazon, R. C., Campos, L. Z. O., Proença, C. E. B., & Silva, J. C. S. (2009). Araçás do gênero Psidium: espécies, ocorrências, descrição e usos. Documentos Embrapa Cerrados: Brasília. 48 p.
Haminiuk, C. W. I., Sierakowski, M. R., Vidal, J. R. M. B., & Masson, M. L. (2006). Influence of temperature on the rheological behavior of whole araçá pulp (Psidium cattleianum sabine). LWT - Food Science and Technology, 39, 427-431.
Khalid, M., Rahman, S., Bilal, M., & Dan-Feng, H. (2019). Role of flavonoids in plant interactions with the environment and against human pathogens-A review. Journal of Integrative Agriculture, 18 (1), 211-230.
Koch, S., Fachinetto, J. M., & Bianchi, V. (2021) Distribuição geográfica potencial atual e futura de Araçá (Psidium Catlleianum) para a América do Sul. Brazilian Journal of Development, 7 (2), 16268-16277.
Kosera Neto, C., Radaelli, J. C., Guollo, K., Wagner Júnior, A., Zanela, J., & Frazon, R. C. (2020). Acompanhamento fenológico do morango-goiaba na Região Sudeste do Paraná. Pesquisa, Sociedade e Desenvolvimento, 9 (10), e8319109180.
Lanzetta, P. (2012). Foto de Araçá Unidade: Embrapa Clima Temperado. Recuperado em 20 dezembro, 2021, de https://www.embrapa.br/busca-de-imagens/-/midia/640002/araca.
Lira, L. A., Vesoloski, F. J., Peruzzolo, M., Flôres, Z. D., Cansian, R. L., & Paroul, N. (2021). Atividades Antioxidante, Antimicrobiana e Compostos Fenólicos de Extratos Comercial e In Natura de Cúrcuma Longa. Perspectiva, 45 (169), 107-114.
Lopes, M. M. A., & Silva. E. O. (2018). Araçá - Psidium cattleyanum Sabine. Exotic Fruits - Reference Guide, 31-36.
Luo, J., Mills, K., Le Cessie, S., Noordam, R., & Van Heemst, D. (2019) Ageing, Age-related Diseases and Oxidative Stress: What to Do Next? Ageing Research Reviews, 57, 100982.
Maleki, S., Crespo, J. F., & Cabanillas, B. (2019). Anti-inflammatory effects of flavonoids. Food Chemistry, 199, 125124.
Mallmann, L. P., Tischer, B., Vizzotto, M., Rodrigues, E., & Manfroi, V. (2020). Comprehensive identification and quantification of unexploited phenolic compounds from red and yellow araçá (Psidium cattleianum Sabine) by LC-DAD-ESI-MS/MS, Food Research International, 131, 108978.
Mark, R., Lyu, X., Lee, J. J. L., Parra-Saldívar, R., & Chen, N. W. (2019). Sustainable production of natural phenolics for functional food applications. Journal of Functional Foods, 57, 233-254.
Medina, A. L., Haas, L. I. R., Chaves, F. C., Salvador, M., Zambiazi, R. C., Da Silva, W. P., Nora, L., & Rombaldi, C. V. (2011). Araçá (Psidium cattleianum Sabine) fruit extracts with antioxidant and antimicrobial activities and antiproliferative effect on human cancer cells. Food Chemistry, 128(4), 916-922.
Melo, W. D. (2019). Propriedades físico-químicas e características histoquímicas do araçá vermelho (Psidium catteyanum Sabine). Dissertação de Mestrado em Ciência dos Alimentos. Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil.
Melo, W. D.; Cavalcante, M.D.B., & Amante E.R. (2020). Characterization of the red araçá (Psidium Cattleianum Sabine) lyophilized in Powder. Brazilian Journal of Development, 6 (5), 29868-29875.
Meregalli, M. M., Puton, S. M. B., Dal'maso, F. C., Amaral, U. A., Zeni, J., Cansian, R. L., Mignoni, M. L., & Backes, G. T. (2020). Conventional and ultrasound- assisted methods for extraction of bioactive compounds from red araça peel (Psidium cattleianum Sabine). Arabian Journal of Chemistry, 13, 5800-5809.
Noreen, A., Nazlic, Z., Akrama, J., Rasulb, I., Manshaa, N.Y., Iqbald, R., Tabasum, S., Zuber, M., & Zia, K. M. (2017). Pectins functionalized biomaterials, a new viable approach for biomedical applications: A review. International Journal of Biological Macromolecules, 101, 254-272.
Oliveira, P. S., Chaves, V. C., Soares, M. S. P., Bona, N. P., Mendonça, L. T., Carvalho, F. B., Gutierres, J. M., Vasconcellos, F. A., Vizzotto, M., Vieira, A., Spanevello, R. M., Reginatto, F. H., Lencina, C. L., & Francieli Moro Stefanello, F. M. (2018). Southern Brazilian native fruit shows neurochemical, metabolic and behavioral benefits in an animal model of metabolic syndrome. Metabolic Brain Disease, 33, 1551-1562.
Owona, A. B., Abia, A. W., & Moundipa F. P. (2020). Natural compounds flavonoids as modulators of inflammasomes in chronic Diseases. International Immunopharmacology, 84, 106498.
Pereira, E. S., Camargo, T. M., Radunz, M., Ribeiro, J. A., Alvez, P. I. C., Vizzotto, M., & Gandra, E. A. (2019). Determinação de atividade antimicrobiana do araçá vermelho (Psidium cattleianum L.). In: A produção do Conhecimento nas Ciências Agrárias e Ambientais, 2, 217-226.
Pereira, E. S., Vinholes, J. R., Camargo, T. M., Raphaelli1 C. O., Ferri N. M. L., Nora, L., & Vizzotto, M. (2021). Araçá (Psidium cattleianum Sabine): bioactive compounds, antioxidant activity and pancreatic lipase inhibition. Food Technology Ciência Rural, 51 (11), e20200778.
Pereira, E. S., Vinholes, J.R., Franzon, R., Dalmazo, G., Vizzotto, M., & Nora, L. (2018). Psidium cattleianum fruits: A review on its composition and bioactivity. Food Chemistry, 258, 95-103.
Possa, J. (2016). Compostos Bioativos e Capacidade Antioxidante De Araçás (Psidium Cattleianum Sabine) Morfotipo Amarelo e Vermelho Cultivados No Rio Grande Do Sul. Monografia de Bacharel em Nutrição, Universidade Federal do Rio Grande do Sul, Brasil.
Ribeiro, A.B., Chisté, R.C., Freitas, M., da Silva, A.F., Visentainer, J.V., & Fernandes, E. (2014). Psidium cattleianum fruit extracts are efficient in vitro scavengers of physiologically relevant reactive oxygen and nitrogen species. Food Chemistry, 165, 140-148.
Rosário, M. F., Biduski, B., Santos, F. D., Hadlish, V. E., Tormen, L., Dos Santos, F. H. G., & Pinto, Z. V. (2020). Red Araçá pulp microencapsulation by hydrolyzed pinhão Starch, tara qnd qrabic gums. J. Sci. Food Agric., 101 (5), 2052-2062.
Sies, H. (2020). Oxidative eustress and oxidative distress: Introductory remarks. In: Oxidative Stress (Chap. 1, pp. 3-12). Amsterdan: Elsevier.
Silva Junior, M. C. (2005). 100 árvores do cerrado: guia de campo. Brasília, DF: Rede de Sementes do Cerrado, 278p.
UNESP (2015). Faculdade de Ciências Agronômicas. Biblioteca Prof. Paulo de Carvalho Mattos. Tipos de revisão de literatura. Botucatu, 2015. https://www.fca.unesp.br/Home/Biblioteca/tipos-de-evisao-de-literatura.
Taiz, L., & Zeiger, E. (2009). Fisiologia Vegetal. 4ª Ed. Artmed: Porto Alegre, RS, Brasil.
Tavsan, Z; & Kayali, H. A. (2019). Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomedicine & Pharmacotherapy, 116, 109004.
Thornthwaite, J. T., Seth, P., Thibado, P. S., & Thornthwaite, A. K. (2020). Bilberry anthocyanins as agents to address oxidative stress Pathology. In: Preedy, V.R. Pathology Oxidative Stress and Dietary Antioxidant. (chap. 17, pp. 179-187). Amsterdan: Elsevier.
Tuler, C. A., Proença, B. E. C., Carrijo, T. T., & Peixoto, L. A. (2018). Typification and nomenclatural notes on Psidium cattleyanum (Myrtaceae). International Association for Plant Taxonomy (IAPT), 67 (6), 1194-1198.
Van’t Veer, P., Janson, M., Klert, M., & Kok, F. (2000). Fruits and vegetables in the prevention of cancer and cardiovascular disease. Public Health Nutrition, 3, 103-107.
Verma, K., & Srivastavp, P. (2020). Bioactive compounds of rice (Oryza sativa L.): Review on paradigm and its potential benefit in human health. Trends in Food Science & Technology, 97, 355-365.
Verruck, S., Prudencio, S. E., & Da Silveira, M. S. (2018). Compostos Bioativos Com Capacidade Antioxidante e Antimicrobiana em Frutas. Revista do Congresso Sul Brasileiro de Engenharia de Alimentos, 4 (1), 112.
Vinholes, J., Lemos, G., Barbieri, R.L., Franzon, R. C., & Vizzotto, M. (2017). In vitro assessment of the antihyperglycemic and antioxidant properties of araçá, butiá and pitanga. Food Bioscience, 19, 92-100.
Vuolo, M. M., Lima, V. S., & Maróstica Junior, R. (2019). Phenolic Compounds: Structure, Classification, and Antioxidant Power. In: Campos, M.R.S. Bioactive Compounds Health Benefits and Potential Applications. (chap. 2, pp. 33-50). Amsterdan: Elsevier.
Zandoná, G. P., Bagatini, L., Woloszyn, N., Cardoso, J. S., Hoffmann, J. F., Moroni, L. S., Stefanello, F. M., Junges, A., & Rombaldi, C. V. (2020). Extraction and characterization of phytochemical compounds from aracazeiro (Psidium cattleianum) leaf: Putative antioxidant and antimicrobial properties. Food Research International, 137, 109573.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Eloir Pereira Gwozdz; Marília Jordana Dequi Vendrúsculo; Luiz Henrique Menosso; Heloísa Chaves Tasca; Yasmim Miryan Machado; Victor Alberto Stachelski; Sabrina Pavan Zannoni; Marcieli Peruzzolo; Giovana Cristina Ceni; Rosicler Colet; Jamile Zeni; Geciane Toniazzo Backes
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.