Bioactive chitosan/extract peppermint films to food packing in brisee dough: mechanic properties, antioxidant activity and shelf life
DOI:
https://doi.org/10.33448/rsd-v11i1.25436Keywords:
Bioactive compound; Plant extract; Films; Lipid oxidation; Pastry dough.Abstract
Besides practical and convenient products, the consumer has increasingly demanded safe and tasty foods, arousing interest in natural additives. This work aimed to develop chitosan films added with peppermint (Mentha piperita L.) hydroethanolic extract (EHH) for Briseé dough conservation. Films were prepared with chitosan (1% w/v) added with four EHH concentrations: 2.5% (EH2.5), 5% (EH5), 10% (EH10) and 25% (EH25). EH5 and EH10 films showed better antioxidant activity and bioactives retention, so were characterized by visual analysis, thickness, mechanical and optical properties, moisture, density, water vapour permeability, swelling, solubility. Moreover, by antimicrobial action against S. aureus and Escherichia coli, whose results showed they did not exhibit any activity against studied bacteria. For selected films, EHH addition improved mechanical, barrier and optical properties. They were used to pack pieces of dough, then results for DPPH and TBARS showed these films were effective in delaying lipid oxidation over ten days of storage.
References
Abdollahi, M., Rezaei, M., Farzi, G. (2012). Improvement of active chitosan film properties with Rosemary essential oil for food packaging. International Journal of Food Science and Technology, 47, 847–853. https://doi.org/10.1111/j.1365-2621.2011.02917.x
Ahmadi, R., Kalbasi-Ashtari, A., Oromiehie, A., Yarmand, M-S., Jahandideh, F. (2012). Development and characterization of a novel biodegradable edible filmobtained from psyllium seed (Plantago ovata Forsk). Journal of Food Engineering, 109, 745–751. doi:10.1016/j.jfoodeng.2011.11.010
Aloui, H. et al. (2011). Effect of glycerol and coating weight on functional properties of biopolymer-coated paper. Carbohydrate Polymers, 86, 1063-1072. https://doi.org/10.1016/j.carbpol.2011.06.026
Aranaz, I., Acosta, N., Heras, A. (2009). Encapsulation of an Agrobacterium radiobacter extract containing D-hydantoinase and D-carbamoylase activities into alginate–chitosan polyelectrolyte complexes: Preparation of the biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 58 (1 – 4), 54 – 64. https://doi.org/10.1016/j.molcatb.2008.11.006
ASTM D882-10 (2010) Standard Test Method for Tensile Properties of Thin Plastic Sheeting.
Babbar, N., Oberoi, H. S., Uppal, D. S., Patil, R. T. (2011). Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Research International, 44 (1), 391-396. https://doi.org/10.1016/j.foodres.2010.10.001
Balti, R., Mansour, M. B., Sayari, N., Yacoubi, L., Rabaoui, L., Brodug, N., Massé, A. (2017). Development and characterization of bioactive edible films from spider crab (Maja crispata) chitosan incorporated with Spirulina extract. International Journal of Biological Macromolecules, 105, 1464 – 1472. https://doi.org/10.1016/j.ijbiomac.2017.07.046
Barba de la Rosa, A. P. et al. (2009). Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: Phenolic acids and flavonoids with potential impact on its nutraceutical quality. Journal of Cereal Science, 49 (1), 117-121. https://doi.org/10.1016/j.jcs.2008.07.012
Barbosa-Pereira, L., Aurrekoetxea, G. P., Angulo, I., Paseiro-Losada, P., Cruz, J. M. (2014). Development of new active packaging films coated with natural phenolic compounds to improve the oxidative stability of beef. Meat Science, 97 (2), 249-254. doi: 10.1016/j.meatsci.2014.02.006
Bialek, M., Rutkowska, J., Bialek, A., Adamska, A. (2016). Oxidative Stability of Lipid Fraction of Cookies Enriched with Chokeberry Polyphenols Extract. Pol. J. Food Nutr. Sci, 66 (2), 77–84. https://doi.org/10.1515/pjfns-2015-0027
Bitencourt, R. G., Possas, A. M. M., Camilloto, G. P., Cruz, R. S., Otoni, C. G. (2014). Antimicrobial and aromatic edible coating on fresh-cut pineapple preservation. Ciência Rural, 44 (6), 1119 – 1125. https://doi.org/10.1590/S0103-84782014000600027
Bitencourt, C. M., Fávaro-Trindade, C. S., Sobral, P. J. A., Carvalho, R. A. (2014). Gelatin-based films additivated with curcuma ethanol extract: Antioxidant activity and physical properties of films. Food Hydrocolloids, 40, 145-152. https://doi.org/10.1016/j.foodhyd.2014.02.014
Blois, M. S. (1958). Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181, 1199–1200. https://doi.org/10.1038/1811199a0
Bodini, R. B. et al. (2013). Properties of gelatin-based films with added ethanol-propolis extract. Food science and technology, 51 (1), 104-110. https://doi.org/10.1016/j.lwt.2012.10.013
Brand-Williams, W., Cuvelier, M. E., Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. Lebensmittel-Wissenchaft and Tecnologie / LWT - Food Science and Technology, 28 (1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Brewer, M. S. (2011). Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Comprehensive Reviews in Food Science and Food Safety, 10, 221-247. https://doi.org/10.1111/j.1541-4337.2011.00156.x
Camo, J., Lorés, A., Djenane, D., Beltrán, J. A., Roncalés, P. (2011). Display life of beef packaged with an antioxidant active film as function of the concentration of oregano extract. Meat Science, 88, 174-178. doi:10.1016/j.meatsci.2010.12.019
Cao, Na., Fu, Yuhua., He, Junhui. (2007). Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocolloids, 21 (4), 575 – 584. https://doi.org/10.1016/j.foodhyd.2006.07.001
Casariego, A., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., Cruz, L., Díaz, R., Vicente, A. A. (2009). Chitosan/clay films’ properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocolloids, 23, 1895-1902. https://doi.org/10.1016/j.foodhyd.2009.02.007
Cerqueira, M. A., Souza, B. W., Teixeira, J. A., Vicente, A. A. (2012). Effect of glycerol and corn oil on physicochemical properties of polysaccharide films – A comparative study. Food Hydrocolloids, 27 (1), 175-184. https://doi.org/10.1016/j.foodhyd.2011.07.007
Chef Profissional, São Paulo: Editora Senac, 2009, p. 1235.
Chiumarelli, M., Hubinger, M. (2014). Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocolloids, 38, 20-27. https://doi.org/10.1016/j.foodhyd.2013.11.013
Crizel, T. M., Rios, A. O., Alves, V. D., Bandarra, N., Martins, M. M., Flôres, S. H. (2018). Active food packaging prepared with chitosan and olive pomace. Food Hydrocolloids, 74, 139-150. https://doi.org/10.1016/j.foodhyd.2017.08.007.
COSTA-JÚNIOR, E., S.; BARBOSA-STANCIOLI, E., F.; MANSUR, A., A., P.; VASCONCELOS, W., L.; MANSUR, H., S. Preparation and characterization pf chemically crosslinked chitosan / poly (vinyl alcohol) blends for biomedical applications. Carbohydr Polym, p. 76, p. 472-481, 2009.
Darughe, F., Barzegar, M., Sahari, M. A. (2012). Antioxidant and antifungal activity of Coriander (Coriandrum sativum L.) essential oil in cake. International Food Research Journal, 19 (3), 1253-1260.
Dick, M., Costa, T. M. H. C., Gomaa, A., Subirade, M., Rios, A. O., Flôres, S. H. (2015). Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydrate Polymers, 130, 198-205. https://doi.org/10.1016/j.carbpol.2015.05.040
Enayat, S., Banerjee, S. (2009). Comparative antioxidant activity of extracts from leaves, bark and catkins of Salix aegyptiaca sp. Food Chemistry, 116, 23–28. doi:10.1016/j.foodchem.2009.01.092
Fang, Y., Tung, M. A., Britt, I. J., Yada, S., Dalgleish, D. G. (2002). Tensile and barrier properties of edible films made from whey proteins. Journal of Food Science, 67 (1), 188-193. https://doi.org/10.1111/j.1365-2621.2002.tb11381.x
Ferreira, A. S., Nunes, C., Castro, A., Ferreira, P., Coimbra, M. A. (2014). Influence of grape pomace extract incorporation on chitosan films properties. Carbohydrate Polymers, 113, 490–499. https://doi.org/10.1016/j.carbpol.2014.07.032
Genskowsky, E., Puente, L. A, Perez-Alvarez, J. A., Fernandez-Lopez, J., Munoz, L. A., Viuda-Martos, M. (2015). Assessment of antibacterial and antioxidant properties of chitosan edible films incorporated with maqui berry (Aristotelia chilensis). LWT - Food Science and Technology, 64, 1057-1062. https://doi.org/10.1016/j.lwt.2015.07.026
Gómez-Estaca, J., Montero, P., Fernández-Martín, F., Alemán, A., Gómez-Guillén, M. C. (2009). Physical and chemical properties of tuna-skin and bovine hide gelatin films with added aqueous oregano and rosemary extracts. Food Hydrocolloids, 23, 1334-1341. https://doi.org/10.1016/j.foodhyd.2008.09.013
Guoa, M., Maa, Y., Wanga, C., Liub, H., Li, Q., Fei, M. (2015). Synthesis, anti-oxidant activity, and biodegradability of a novel recombinant polysaccharide derived from chitosan and lactose. Carbohydrate Polymers, 118, 218-223. doi: 10.1016/j.carbpol.2014.11.027
Hafsa, J. et al. (2016). Physical, antioxidant and antimicrobial properties of chitosan films containing Eucaplyptus globulus essencial oil. LWT – Food Science and technolology, 68, 335-443. doi:10.1016/j.lwt.2015.12.050
Hajji, S., Chaker. A., Jridi, M., Maalej, H., Jellouli, K., Boufi, S., Nasri, M. (2016). Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films. Environmental Science and Pollution Research, 23 (15), 15310–15320. doi: 10.1007/s11356-016-6699-9
Hosseini, M. H., Razavi, S. H., Mousavi, M. A. (2009). Antimicrobial, physical and mechanical properties Of chitosan-based films incorporated with thyme, clove and cinnamon essential oils. Journal of Food Processing and Preservation, 33, 727–743. https://doi.org/10.1111/j.1745-4549.2008.00307.x
Izzreen, I., Noriham, A. (2011). Evaluation of the antioxidant potential of some Malaysian herbal aqueous extracts as compared with synthetic antioxidants and ascorbic acid in cakes. International Food Research Journal, 18 (2), 583-587.
Jayabalan, R., Subathradevi, P., Marimuthu, S., Sathishkumar, M., Swaminathan, K. (2008). Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chemistry, 109 (1), 227-234. https://doi.org/10.1016/j.foodchem.2007.12.037
Kalaycioğlu, Z., Torlak, E., Akin-Evingür, G., İlhan, F., Özen, B. (2017). Antimicrobial and psysical properties of chitosan films incorporated with safflower extract. International Journal of Biological Macromolecules, 101, 882-888. doi: 10.1016/j.ijbiomac.2017.03.174.
Kanatt, S. R., Chander, R., Sharma, A. (2008). Chitosan and mint mixture: A new preservative for meat and meat products. Food Chemistry, 107, 845–852. https://doi.org/10.1016/j.foodchem.2007.08.088
Kanatt, S. R., Rao, M. S., Chawla, S. P., Sharma, A. (2012). Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocolloids, 29, 290-297. https://doi.org/10.1016/j.foodhyd.2012.03.005
Kanmani, P., Rhim, J. W. (2014). Development and chacterization of carrageenanqgrapefruit seed extract composite films for active packging. International Journal of Biological Macromolecules, 68, 258-266. https://doi.org/10.1016/j.ijbiomac.2014.05.011
Khoshgozaran-Abras, S., Azizi, M. H., Hamidy, Z., Bagheripoor-Fallah, N. (2012). Mechanical, physicochemical and color properties of chitosan based coatings as a function of the incorporation of gel of Aloe vera. Carbohydrate Polymers, 87, 2058–2062. doi:10.1016/j.carbpol.2011.10.020
Leceta, I., Guerrero, P., De La Caba, K. (2013). Functional properties of chitosan based films. Carbohydrate Polymers, 93 (1), 339-346. https://doi.org/10.1016/j.carbpol.2012.04.031
Leceta, I., Molinaro, S., Guerrero, P., Kerry, J. P., De La Caba, K. (2015). Quality attributes of map packaged ready-to-eat baby carrots by using chitosan-based coatings. Postharvest Biology and Technology, 100, 142-150, 2015. https://doi.org/10.1016/j.postharvbio.2014.09.022
Li, J. H. et al. (2014). Preparation and chacacterization of active gelatina-based films incorporated with natural antioxidants. Food Hydrocolloids, 37, 166-173. doi:10.1016/j.foodhyd.2013.10.015
Lisková, J., Tomithy, E. L., Berenová J., Skwarczynka, A., Bozic, M., Kesshari., Modrzejewska, Z., Kokol, G. S., Bacakova, L. (2015). Chitosan hydrogels enriched with polyphenols: Antibacterial activity, cell adhesion, growth, and mineralization. Carbohydrate Polymers, 129, 135–142. doi:10.1016/j.carbpol.2015.04.043
Liu, X., Jia, Y., Hu, Y., Xia, X., Li, Y., Zhou, J., Liu, Y. (2016). Effect of Citrus wilsonii Tanaka extract combined with alginate-calcium coating on quality maintenance of white shrimps (Litopenaeus vannamei Boone). Food Control, 68, 83-91. doi: 10.1016/j.foodcont.2016.03.028
López-Rubio, A. et al. (2004). Overview of Active Polymer Based Packing Technologies for Food Application. Food Reviews International, 20, 357-387. https://doi.org/10.1081/FRI-200033462
López, V., Martin, S., Gomez-Serranilia, M. P., Caretero, M. E., Jager, A. K., Calvo, M. I. (2010). Neuroprotective and neurochemical properties of mint extracts. Phytotherapy Research, 24, 859-874. doi: 10.1002/ptr.3037
Ma, Q., Zhang, Y., Critzer, F., Davidson, P. M., Zivanovic, S., Zhong, Q. (2016). Physical, mechanical, and antimicrobial properties of chitosan films with microemulsions of cinnamon bark oil and soybean oil. Food Hydrocolloids, 52, 533-542. https://doi.org/10.1016/j.foodhyd.2015.07.036
Mahmoud, R., Savello, P. A. (1992). Mehanical properties of water vapor transferability through whey protein films. Journal of Dairy Science, 75 (4), 453-460. https://doi.org/10.3168/jds.S0022-0302(92)77834-5
Martins, J. T., Cerqueira, M. A., Vicente, A. A. (2012). Influence of a-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocolloids, 27 (1), 220–227. https://doi.org/10.1016/j.foodhyd.2011.06.011
Méndez-Cid, F. J., Lorenzo, J. M., Martínez, S., Carballo, J. (2017). Oxidation of edible animal fats. Comparison of the performance of different quantification methods and of a proposed new semi-objective colour scale-based method. Food Chemistry, 217, 743-749. doi: 10.1016/j.foodchem.2016.09.009
Mekinic, I. G. et al. (2014). In vitro antioxidant and antibacterial activity of Lamiaceae phenolic extracts: A correlation study. Food Technology and Biotechnology, 52 (1), 119-127.
Moldovan, R. I. et al. (2014). LC-MS analysis, antioxidant and antimicrobial activities for five species of Mentha cultivated in Romania. Digest Journal of Nanomaterials and Biostructures, 9 (2), 559-566.
Moradi, M., Tajik, H., Rohani, S. M., Oromiehie, A. R., Malekinejad, H., Aliakbarlu, J., Hadian, M. (2012). Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT-Food Sci Technol, 46, 477–484. https://doi.org/10.1016/j.lwt.2011.11.020
Morelli, C. L., Mahrous, M., Belgacema, M. N., Branciforti, M. C., Bretas, R. E. S., Bras, J. (2015). Natural copaiba oil as antibacterial agent for bio-based active packaging. Industrial Crops and Products, 70, 134-141. doi:10.1016/j.indcrop.2015.03.036
Muñoz, L. A., Aguilera, J. M., Rodriguez-Turienzo, L., Cobos, A. (2012). Characterization and microstructure of films made from mucilage of Salvia hispânica and whey protein concentrate. Journal of Food Engineering, 111 (3), 511-518. doi:10.1016/j.jfoodeng.2012.02.031
Nagarajan, M. et al. (2013). Film forming ability of gelatins from splendid squid (Loligo formosana) skin bleached with hydrogen peroxide. Food Chemistry, 138 (2-3), 1101-1108. doi: 10.1016/j.foodchem.2012.11.069
Norajit, K., Kim, K. M., Ryu, G. H. (2010). Comparative studies on the characterization and antioxidant properties of biodegradable alginate films containing ginseng extract. Journal of Food Engineering, 98 (3), 377-384. https://doi.org/10.1016/j.jfoodeng.2010.01.015
Ojagh, S. M., Rezaei, M., Razavi, S. H., Hosseini, S. M. H. (2010). Development and evaluation of a new biodegradable film made of chitosan and cinnamon essential oil with low affinity to water. Food Chemistry, 122 (1), 161–166. https://doi.org/10.1016/j.foodchem.2010.02.033
Oussalah, M., Caillet, S. P., Salmieäri, S. P., Saucier, L., Lacroix, M. (2004). Antimicrobial and Antioxidant Effects of Milk Protein-Based Film Containing Essential Oils for the Preservation of Whole Beef Muscle. Journal Agric. Food Chemistry, 52, 5598−5605. doi: 10.1021/jf049389q
Özvural, E. B., Huang, Q., Chikindas, M. L. (2016). The comparison of quality and microbiological characteristic of hamburger patties enriched with green tea extract using three techniques: Direct addition, edible coating and encapsulation. LWT - Food Science and Technology, 68, 385-390. doi:10.1016/j.lwt.2015.12.036
Park, S. I., Zhao, Y. (2004). Incorporation of a high concentration of mineral or vitamin into chitosan-based films. Journal of Agricultural and Food Chemistry, 52 (7),1933–1939. doi: 10.1021/jf034612p
Pastor, C., Sanchez-Gonzalez, L., Chafer, M., Chiralt, A., Gonzalez-Martínez, C. (2010). Physical and antifungal properties of hydroxypropylmethylcellulose based films containing propolis as affected by moisture content. Carbohydrate Polymers, 82,1174-1183. http://dx.doi.org/10.1016/j.carbpol.2010.06.051
Peng, Y., Li, Y. (2014). Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocolloids, 36, 287-293. https://doi.org/10.1016/j.foodhyd.2013.10.013
Pereda, M., Amica, G., Marcovich, N. E. (2012). Development and characterization of edible chitosan/olive oil emulsion films. Carbohydrate Polymers, 87 (2), 1318-1325. https://doi.org/10.1016/j.carbpol.2011.09.019
Pereda, M., Amica, G., Racz, I., Marcovich, N. E. (2011). Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. Journal of Food Engineering, 103 (1), 76-83. https://doi.org/10.1016/j.jfoodeng.2010.10.001
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da pesquisa científica. [free e-book]. 1. ed. – Santa Maria, RS : Ed. UAB / NTE / UFSM. ISBN 978-85-8341-204-5
Pérez-Córdoba, L. J., Norton, I. T., Batchelorc, H. K., Gkatzionisb, K., Spyropoulos, F., Sobral, P. J. A. (2017). Physico-chemical, antimicrobial and antioxidant properties of gelatin-chitosan based films loaded with nanoemulsions encapsulating active compounds. Food Hydrocolloids, 79, 544 – 559. https://doi.org/10.1016/j.foodhyd.2017.12.012
Ramirez, M. R., Morcuende, D., Estévez, M., Cava, R. (2004). Effects of frying type with cooking fat and refrigerated storage in lipid oxidation and color of fried pork loin chops. Food Chemistry, 88 (1), 85-94. http://dx.doi.org/10.1016/j.foodchem.2004.01.024
Rubilar, J. F., Cruz, R. M., Silva, H. D., Vicente, A. A., Khmelinskii, I., Vieira, M. C. (2013). Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. Journal of Food Engineering, 115 (4), 466-474. https://doi.org/10.1016/j.jfoodeng.2012.07.009
Sabaghi, M., Maghsouldou, Y., Khomeiri, M., Ziaiifar, A. M. (2015). Active edible coating from chitosan incorporating green tea extract as an antioxidant and antifungal on fresh walnut kernel. Postharvest Biology and Technology, 110, 224-228. http://dx.doi.org/10.1016/j.postharvbio.2015.08.025
Sanchez-Gonzalez, L., Chafer, M., Chiralt, A., Gonzalez-Martinez, C. (2010). Physical Properties of edible chitosan films containing bergamot essential oil and his inhibitory action of Penicillium italicum. Carbohydrate Polymers, 82, 277–283. http://dx.doi.org/10.1016/j.carbpol.2010.04.047
Santacruz, C., Castro, R. M. (2015). Edible films based on starch and chitosan. Effect of starch source and concentration, plasticizer, surfactant's hydrophobic tail and mechanical treatment. Food Hydrocolloids, 49, 89-94. http://dx.doi.org/10.1016/j.foodhyd.2015.03.019
Sathivel, S.; Liu, Q., Huang, J., Prinyawiwatkul, W. (2007). The influence of chitosan glazing on the quality of skinless pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. Journal of Food Engineering, 83, 366-373. http://dx.doi.org/10.1016/j.jfoodeng.2007.03.009
Shahidi, F., Zhong, Y. (2005). Lipid oxidation: Measurement Methods. Bailey’s Industrial Oil and Fat Products, 6 (6), 357–385. https://doi.org/10.1002/047167849X.bio050
Shen, Z., Kamdem, D. P. (2015). Development and characterization of biodegradable chitosan films containing two essential oils. International Journal of Biol Macromol., 74, 286-286. doi: 10.1016/j.ijbiomac.2014.11.046
Shojaee-Aliabadi, S., Mohammadifar, M. A., Hosseini, H., Mohammadi, A., Ghasemlou, M., Hosseini, S. M.; Haghshenas, M., Khaksar, R. (2014). Characterization of nanobiocomposite kappa-carrageenan film with Zataria multiflora essential oil and nanoclay. International Journal of Biological Macromolecules, 69, 282-289. https://doi.org/10.1016/j.ijbiomac.2014.05.015.
Silva, M. de F., Lopes, P. S., Silva, C. F., Yoshida, C. M. P. (2016). Active packaging material based on buriti oil – Mauritia flexuosa L.f. (Arecaceae) incorporated into chitosan films. Journal of Applied Polymer Science, 10, 1-9. https://doi.org/10.1002/app.43210
Silva-Weiss, A. et al. (2013). Natural Additives in Bioactive Edible Films and Coatings: Functionality and Applications in Foods. Food Engineering Reviews, 5 (4), 200-216. http://dx.doi.org/10.1007/s12393-013-9072-5
Siripatrawan, U., Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24 (8), 770-775. http://dx.doi.org/10.1016/j.foodhyd.2010.04.003
Siripatrawan, U., Noipha, S. (2012). Active film from chitosan incorporating green tea extract for shelf life extension of pork sausages. Food Hydrocolloids, 27 (1), 102-108. https://doi.org/10.1016/j.foodhyd.2011.08.011
Siripatrawan, U., Vitchayakiti, W. (2016). Improving the functional properties of chitosan films as active food packaging, incorporating with propolis. Food Hydrocolloids, 61, 695–702. https://doi.org/10.1016/j.foodhyd.2016.06.001
Souza, V. G. L., Fernando, A. L., Piresa, J. R. A., Rodrigues, P. F., Lopes, A. A. S., Fernandes, F. M. B. (2017). Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops & Products, 107, 565–572. https://doi.org/10.1016/j.indcrop.2017.04.056
Sørensen, G., Jørgensen, S. S. (1996). A critical examination of some experimental variables in the 2-thiobarbituric acid (TBA) test for lipid oxidation in meat products. European Food Research and Technology, 202, 205–210. https://doi.org/10.1007/BF01263541
Tongnuanchan, P., Benjakul, S., Prodpran, T. (2014). Structural, morphological and thermal behaviour characterisations of fish gelatin film incorporated with basil and citronella essential oils as affected by surfactants. Food Hydrocolloids, 41, 33-43. http://dx.doi.org/10.1016/j.foodhyd.2014.03.015
Thakhiew, W., Devahastin, S., Soponronnarit, S. (2014). Combined Effects of Drying Methods, Extract Concentration, and Film Thickness on Efficacy of Antimicrobial Chitosan Films. Journal of Food Science, 79 (6), E1150-8. doi: 10.1111/1750-3841.12488
Van Den Broek, L. A. M., Knoop, R. J. I., Kappen, F. H. J., Boeriu, C. G. (2015). Chitosan films and blends for packaging material. Carbohydrate Polymers, 116, 237-242. https://doi.org/10.1016/j.carbpol.2014.07.039
Vasco, C., Ruales, J., Kamal-Eldin, A. (2008). Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry, 111 (4), 816–823. https://doi.org/10.1016/j.foodchem.2008.04.054
Vital, A. C. P., Guerrero, A., Monteschio, J. O., Valero, M. V., Carvalho, C. B., Filho, B. A. (2016). Effect of edible and active coatings (with rosemary and oregano essential oils) on beef characteristics and consumer acceptability. PloS One, 11 (8), 160-169. doi: 10.1371/journal.pone.0160535
Wang, L., Dong, Y., Men, H., Tong, J., Zhou, J. (2013). Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food hydrocolloids, 32 (1), 35-41. http://dx.doi.org/10.1016/j.foodhyd.2012.11.034
Wang, L., Wang, Q., Tong, J., Zho, J. (2015). Physicochemical Properties of Chitosan films Incorporated with Honeysuckle Flower Extract for Active Food Packaging. Food Process Engineering, 40, 1745-4530. https://doi.org/10.1111/jfpe.12305
Wang, Q., Tian, F., Feng, Z., Fan, X., Pan, Z., Zhou, J. (2015). Antioxidant activity and physicochemical properties of chitosan films incorporated with Lycium barbarum fruit extract for active food packaging. International Journal of Food Science and Technology, 50, 458–464. https://doi.org/10.1111/ijfs.12623
Wheatley, R. A. (2000). Some trends in the analytical chemistry of lipid peroxidation. TrAC, Trends in Analytical Chemistry, 19 (10), 617-628. doi:10.1016/S0165-9936(00)00010-8
Wu, J., Chen, S., Ge, S., Miao, J., Li, J., Zhang, Q. (2013). Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocolloids, 32 (1), 42-51. https://doi.org/10.1016/j.foodhyd.2012.11.029
Yuan, G., Lv, H., Yang, B., Chen, X., Sun, H. (2015). Physical Properties, Antioxidant and Antimicrobial Activity of Chitosan Films Containing Carvacrol and Pomegranate Peel Extract. Molecules, 20, 11034-11045. https://doi.org/10.3390/molecules200611034
Vyncke, B. W. (1970). Direct determination of the thiobarbituric acid value in trichloracetic acid extracts of fish as a measure of oxidative rancidity. Fette Seifen Anstrichm., Leinfelden, 72 (12), 1084-1087. https://doi.org/10.1002/lipi.19700721218
Zamudio-Flores, P. B., Torres, A. V., Salgado-Delgado, R., Bello-Pérez, L. A. (2010). Influence of the oxidation and acetylation of banana starch on the mechanical and water barrier properties of modifies starch and modified starch/chitosan blend films. Journal of Applied Polymer Science, 115, 991-998. https://doi.org/10.1002/app.3104
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Luana de Souza Cavalcante Carnaval; Anderson Campos Bezerra; Betty Del Carmen Jarma Arroyo; Lara Oliveira Lins; Enayde de Almeida Melo; Andrelina Maria Pinheiro Santos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.