Bio-oil extracting methods from microalgae Nannochloropsis oculata: a bibliometric analysis


  • Kárita Fernanda Fontes Lima Universidade Federal do Espírito Santo - Campus Ceunes, Brasil
  • Paulo Sérgio da Silva Porto Universidade Federal do Espírito Santo - Campus Ceunes, Brasil
  • Rodrigo Randow de Freitas Universidade Federal do Espírito Santo



Bibliometrics; Lipids; Extraction.


Current research has shown great interest in microalgae for their ability to capture CO2 from the atmosphere, harmful gas to the environment and also to store bio-oil with high added value. This oil can be constituted of polyunsaturated fatty acids of Omega 3 and Omega 6. In addition to having as a scenario the bibliometric, a statistical tool that allows to map and generate different indicators of treatment and managements of information and knowledge. Thus, a quantitative analysis of the articles found in the Web of Science database was carried out and a qualitative analysis was carried out, allowing highlighting the importance of the study of this technique. For example, France and Portugal as the country with the largest number of publications, spreading to several countries in different continents. Finding a rise in the number of articles published in recent years, showing the growing interest in microalgae bio-oil.

Author Biographies

Kárita Fernanda Fontes Lima, Universidade Federal do Espírito Santo - Campus Ceunes, Brasil

Universidade Federal do Espírito Santo - Campus Ceunes, Brasil

Rodrigo Randow de Freitas, Universidade Federal do Espírito Santo

Universidade Federal do Espírito Santo - Campus Ceunes, Brasil


ALI, M.; WATSON, I.A. Microwave treatment of wet algal paste for enhanced solvent extraction of lipids for biodiesel production. Renewable Energy, v. 76, p. 470-477, 2015.

ATABANI, A. E.; SILITONGA, A. S.; BADRUDDIN, A.; MAHLIA, M. I.; MASJUKI, H. H.; MEKHILEF,S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and sustainable energy reviews, v. 16, n. 4, p. 2070-2093, 2012.

ARAÚJO, G. S.; MATOS, L. J. B. L.; GONCALVES, L. B.; FERNANDES, F. A. N.; FARIAS, W. R. L. Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for tem microalgal strains. Bioresource technology, v. 102, n. 8, p. 5248-5250, 2011.

BARRETO, L. M.; VILAÇA, M. T. M.. Controvérsias e consensos em educação ambiental e educação para o desenvolvimento sustentável. Research, Society and Development, v. 7, n. 5, p. 10, 2018.

BRENNAN, L.; OWENDE, P. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and sustainable energy reviews, v. 14, n. 2, p. 557-577, 2010.

BRASIL, B. S. A. F.; SILVA, F. C. P.; SIQUEIRA, F. G. Microalgae biorefineries: The Brazilian scenario in perspective. New biotechnology, v.39, n.1, p.90-98, 2017.

CARRIJO, R. S.; SILVA, J. J. R.; OLIVEIRA, G. A.; PIO, F. P. B. Uso de microalgas para a produção de biodiesel.Research, Society and Development, v. 7, n. 5, 2018.

CHEN, C. Y.; YEH, K. L.; AISYAH, R.; LEE, D. L.; CHANG, J. S. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource technology, v. 102, n. 1, p. 71-81, 2011.

CHEN, C.; HU, Z.; LIU, S.; TSENG, H. Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert opinion on biological therapy, v. 12, n. 5, p. 593-608, 2012.

CLARENS, A. F.; ELEAZER P. RESURRECCION, E. P.; WHITE, M. A.; COLOSI, L. M. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental science & technology, v. 44, n. 5, p. 1813-1819, 2010.

CRAMPON, C.; MOUAHID, A.; TOUDI, S. A.; LEPINE, O. BADENS, E. Influence of pré treatment on supercritical CO2 extraction from Nannochloropsis oculata. The Journal of Supercritical Fluids, v. 79, p. 337-344, 2013.

CHISTI, Y. Biodiesel from microalgae. Biotechnology advances, v. 25, n. 3, p. 294-306, 2007.

FANNY, A.; ABERT-VIANA, M; PELTIER, G.; CHEMAT, F. “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Bioresource technology, v. 114, p. 457-465, 2012.

FENG, D.; CHEN, Z. C.; XUE, S.; ZHANG, W. Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresource Technology, v. 102, n. 12, p. 6710-6716, 2011.

FOLEY, P. M.; BEACH, E. S.; ZIMMERMAN, J. B. Algae as a source of renewable chemicals: opportunities and challenges. Green Chemistry, v. 13, n. 6, p. 1399-1405, 2011.

GEORGIANNA, D. R.; MAYFIELD, S.P. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, v. 488, n. 7411, p. 329-335, 2012.

HUANG, G. H.; CHEN, F. WEI, D.; ZHANG, X. W.; CHEN,G. Biodiesel production by microalgal biotechnology. Applied energy, v. 87, n. 1, p. 38-46, 2010.

HUERLIMANN, R.; DE NYS, R.; HEIMANN, K. Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale‐up production. Biotechnology and bioengineering, v. 107, n. 2, p. 245-257, 2010.

KROHN, B. J.;MCNEFF, C. V.; YAN, B.; NOWLAN, D. Production of algae-based biodiesel using the continuous catalytic Mcgyan® process. Bioresource technology, v. 102, n. 1, p. 94-100, 2011.

KUMAR,A.; ERGAS, S. ; YUAN, X. ; SAHU, A. ; ZHANG, Q. O. ; DEWULF, J. ; MALCATA, F. X. ; VAN LANGENHOVE, H. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends in biotechnology, v. 28, n. 7, p. 371-380, 2010.

LACERDA, R. T. O.; ENSSLIN, L.; ENSSLIN, S. R. Uma análise bibliométrica da literatura sobre estratégia e avaliação de desempenho. Gestão & Produção, v. 19, n. 1, 2012.

LAM, M. K.; LEE, K. T. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnology advances, v. 30, n. 3, p. 673-690, 2012.

LEOW, S.; WITTER, J. R.; VARDON, D. R.; SHARMA, B. K.; GUEST, J.S.; STRATHMANN, T. J. Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition. Green Chemistry, v. 17, n. 6, p. 3584-3599, 2015.

LIM, D. K. Y.; GARG, S.; TIMMINS, M; ZHANG, E. S. B.;THOMAS-HALL,S. R; SCHUHMANN, H.; LI,Y. ; SCHENK, P. M. Isolation and evaluation of oil producing microalgae from subtropical coastaland brackish waters. PlosOne, v. 7, n. 7, p. 40751, 2012.

HON, S. E.; CHANG, L. P.; TINSHEN,C.; CHUNLI, Y; WU, Y.P.; JONG, T. T.; SHIEH, C. J.; HSU, N. L.; CHANG, C. M. J. MATA, T. M.; MARTINS, A. A.; CAETANO, N. S. Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews, v. 14, n. 1, p. 217-232, 2010.

MCMILLAN, J. R.;WATSON, I. A.; ALI, M.; JAAFAR, W. Evaluation and comparison of algal cell disruption methods: microwave, waterbath, blender, ultrasonic and laser treatment. Applied energy, v. 103, p. 128-134, 2013.

MOUAHID, A.; CRAMPON, C.; TOUDI, S. A.; BADENS, E. Supercritical CO 2 extraction of neutral lipids from microalgae: Experiments and modelling. The Journal of Supercritical Fluids, v. 77, p. 7-16, 2013.

ORTENZIO, Y. T.; AMARAL, G. G; ALMEIDA, S. S.; OLIVEIRA, E. C. A. M. Cultivo de microalgas utilizando resíduos agroindustriais para a produção de bicombustíveis: perspectivas e desafios. Bioenergia em Revista: Diálogos,v. 5, n. 1, p.20-25, 2015.

PAL, D.; GOLDBERG, I. K.; COHEN, Z.; BOUSSIBA, S.. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Applied microbiology and biotechnology, v. 90, n. 4, p. 1429-1441, 2011.

PITTMAN, J. K.; DEAN, A.P.; OSUNDEKO, O. The potential of sustainable algal biofuel production using wastewater resources. Bioresource technology, v. 102, n. 1, p. 17-25, 2011.

POHNDORF, R. S.; CAMARA, A. S.; LARROSA, A. P. Q.; PINHEIRO, P. C.; STRIEDER, M. M.; PINTO, L. A. A.; Production of lipids from microalgae Spirulina sp.: Influence of drying, cell disruption and extraction methods. Biomass and Bioenergy, v. 93, p. 25-32, 2016.

QUINN, J. C.; YATES, T.; DOUGLAS, N.; WEYWE, K.; BUTLER, J.; BRADLEY, T. H.; LAMMERS, P. J. Nannochloropsis production metrics in a scalable outdoor photobioreactor for commercial applications. Bioresource Technology, v. 117, p. 164-171, 2012.

RADAKOVITS, R.; JINKERSON, R. E.; DARZINS, A.; POSEWITZ, M. C. Genetic engineering of algae for enhanced biofuel production. Eukaryotic cell, v. 9, n. 4, p. 486-501, 2010.

RODOLFI, L.; ZITTELLI, G. C.; BASSI, N.; PADOVANI, G.; BIONDI, N. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor. Biotechnology and bioengineering, v. 102, n. 1, p. 100-112, 2009.

ROLEDA, M. Y.; SLOCOMBE, P.; LEAKEY, R. J. G.; DAY, J. G.; BELL, L. M; STANLEY, M. S et al. Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresource technology, v. 129, p. 439-449, 2013.

SANTOS, C. A. S.; SANTOS, G. D. S.; SANTOS, K. C.; SHI, D. M. Um modelo de sistema de informação gerencial: vantagem competitiva no processo da logística reversa do óleo de cozinha. Research, Society and Development, v. 4, n. 1, p. 62-88, 2017.

SATYANARAYANA, K. G.; MARIANO, A. B.; VARGAS, J. V. C. A review on microalgae, a versatile source for sustainable energy and materials. International Journal of energy research, v. 35, n. 4, p. 291-311, 2011.

STEPHENSON, P. G;Moore, C. M.; Terry, M. J.; Zubkov, M. V.; Bibby, T. S. Improving photosynthesis for algal biofuels: toward a green revolution. Trends in biotechnology, v. 29, n. 12, p. 615-623, 2011.

SHWETHARANI, R.; BALAKRISHNA, R. G. Efficient algal lipid extraction via photocatalysis and its conversion to biofuel. Applied Energy, v. 168, p. 364-374, 2016.

SU, C.H.; CHIEN, L. J.; GOMES, J.; LIN, Y. S; YU, Y. K.; LIOU, J. S.; SYU, R. J. Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. Journal of Applied Phycology, v. 23, n. 5, p. 903-908, 2011.

TAELMAN, S. E.; CHAMPENOIS, J.; EDWARDS, M. D.; DE MEESTER, S.; DEWULF, J. Comparative environmental life cycle assessment of two seaweed cultivation systems in North West Europe with a focus on quantifying sea surface occupation. Algal Research, v. 11, p. 173-183, 2015.

TAPARIA, T.; MVSS, M.; MEHROTRA, R.; SHUKLA, P.; MEHROTRA, S. Developments and challenges in biodiesel production from microalgae: A review. Biotechnology and applied biochemistry, v. 63, n. 5, p. 715-726, 2016.

TANZI, C. D.; VIAN, M. A.; CHEMAT, F. New procedure for extraction of algal lipids from wet biomass: A green clean and scalable process. Bioresource technology, v. 134, p. 271-275, 2013.

WIJFFELS, R. H.; BARBOSA, M. J. An outlook on microalgal biofuels. Science, v. 329, n. 5993, p. 796-799, 2010.

WILLIAMS, P. J. B.; LAURENS, L. M. L. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy & Environmental Science, v. 3, n. 5, p. 554-590, 2010.

YAOYANG, X.; BOEING, W.J. Mapping biofuel field: a bibliometric evaluation of research output. Renewable and Sustainable Energy Reviews, v. 28, p. 82-91, 2013.

ZHAO, Z.; YAN, H. Assessment of the biomass power generation industry in China. Renewable Energy, v. 37, n. 1, p. 53-60, 2012.

ZHENG, H.; GAO, Z.; YIN, J.; TANG, X.; JI, X.; HUANG, H. Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresource Technology, v. 112, p. 212-220, 2012.



How to Cite

LIMA, K. F. F.; PORTO, P. S. da S.; FREITAS, R. R. de. Bio-oil extracting methods from microalgae Nannochloropsis oculata: a bibliometric analysis. Research, Society and Development, [S. l.], v. 7, n. 6, p. e976190, 2018. DOI: 10.17648/rsd-v7i6.259. Disponível em: Acesso em: 27 feb. 2021.