Larvicide potential of essential oils from Brazilian plants against Aedes aegypti
DOI:
https://doi.org/10.33448/rsd-v11i2.26140Keywords:
Aedes aegypti; Arboviruses; Larvicides; Brazilian flora; Essential oils.Abstract
The arboviruses Dengue, Chikungunya and Zika virus are present in several tropical regions and are transmitted by the Aedes aegypti mosquito. The containment of these diseases is done by fighting the vector, usually using chemical insecticides, such as organophosphates and organochlorines. These provoke the resistance of the transmitter, have a high accumulation rate in the body of non-target populations, and promote the contamination of ecosystems. The application of materials of natural origin with larvicidal activity, such as essential oils, is a promising alternative to replace the use of chemical insecticides. In this systematic review, we sought to present the larvicidal properties of essential oils from botanical species of Brazilian flora against Ae. aegypti. The search resulted in 36 papers selected as articles of interest. The 65 plants described in the selected articles showed larvicidal activity mostly excellent (27 were classified as strongly active) or satisfactory (13 were moderately active, and 24 were effective), while only one was inactive. The species that showed the highest larvicidal activity were: Anacardium occidentalis L. (0.01 ppm); Copaifera langsdorffii Desf. (0.04 ppm); Carapa guianensis Aubl. (0.06 ppm); Cymbopogon winterianus Jowitt. (0.10 ppm); Ageratum conyzoides L. (0.15 ppm); Tagetes minuta L. (0.21 – 0.25 ppm); and Siparuna guianensis Aubl. (1.76, 0.98 and 2.46 ppm). Studies on the essential oils of Brazilian plants are of great relevance to combat arboviruses. The Brazilian flora, despite its vast biodiversity, is still little known and explored, possessing a huge potential for the development of eco-friendly, environmentally safe, and low-cost products.
References
Aguiar, R. W. S., Santos, S. F., Morgado, F. S., Ascencio, S. D., Lopes, M. M., Viana, K. F. et al. (2015). Insecticidal and repellent activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus. Plos One, 10(2), 1-14. doi:10.1371/journal.pone.0116765
Almeida, R. R. P., Souto, R. N. P., Bastos, C. N., Silva, M. H. L. & Maia, J. G. S. (2009). Chemical variation in Piper aduncum and biological properties of its dillapiole-rich essential oil. Chem. Biodivers., 6(9), 1427-34. doi:10.1002/cbdv.200800212
Araujo, A. F. O., Ribeiro-Paes, J. T., Deus, J. T., Cavalcanti, S. C. H., Nunes, R. S., Alves, P. B. et al. (2016). Larvicidal activity of Syzygium aromaticum (L.) Merr and Citrus sinensis (L.) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti. Meml. Inst. Oswaldo Cruz, 111(7), 443-9. doi:10.1590/0074-02760160075
Autran, E. S., Neves, I. A., Silva, C. S. B., Santos, G. K. N., Câmara, C. A. G. & Navarro, D. M. A. F. (2009). Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum Jacq. (Piperaceae). Bioresour. Technol., 100(7), 2284-8. doi:10.1016/j.biortech.2008.10.055
Bakkali, F., Averbeck, S., Averbeck, D. & Idaomar, M. (2008). Biological effects of essential oils: a review. Food Chem. Toxicol., 46(2), 446-75. doi:10.1016/j.fct.2007.09.106
Bizzo, H. R., Hovell, A. M. C. & Rezende, C. M. (2009). Brazilian essential oils: general view, developments and perspectives. Quím. Nova, 32(3), 588-94. doi:10.1590/S0100-40422009000300005
Botas, G. S., Cruz, R. A. S., Almeida, F. B., Duarte, J. L., Araújo, R. S., Souto, R. N. et al. (2017). Baccharis reticularia DC. and limonene nanoemulsions: promising larvicidal agents for Aedes aegypti (Diptera: Culicidae) Control. Molecules, 22(11), 1-14. doi:10.3390/molecules22111990
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods – a review. Int. J. Food Microbiol., 94(3), 223-53. doi:10.1016/j.ijfoodmicro.2004.03.022
Carréra, J. C. (2016). Estruturas secretoras e rendimento de óleo essencial de Croton sacaquinha Croizat. e dois morfotipos de Croton cajucara Benth. (Euphorbiaceae). Graduation work, Univ. Estado Pará, Belém – PA, Brazil. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/175258/1/ESTRUTURAS-SECRETORAS.pdf
Carvalho, K. S., Cunha e Silva, S. L., Souza, I. A., Gualberto, S. A., Cruz, R. C. D., Santos, F. R. et al. (2016). Toxicological evaluation of essential oil from the leaves of Croton tetradenius (Euphorbiaceae) on Aedes aegypti and Mus mus musculus. Parasitol. Res., 115(9), 3441-8. doi:10.1007/s00436-016-5106-2
Cavalcanti, E. S. B., Morais, S. M., Lima, M. A. A. & Santana, E. W. P. (2004). Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Meml. Inst. Oswaldo Cruz, 99(5), 541-4. doi:10.1590/S0074-02762004000500015
Coradin, L., Camillo, J. & Pareyn, F. G. C. (2018). Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro: região Nordeste. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/189688/1/Livro-Nordeste-1-2018.pdf
Coradin, L., Siminski, A. & Reis, A. (2011). Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro – região Sul. Brasília: Minist. Environ. https://www.gov.br/mma/pt-br/assuntos/biodiversidade/fauna-e-flora/Regiao_Sul.pdf
Costa, J. G. M., Rodrigues, F. F. G., Angélico, E. C., Silva, M. R., Mota, M. L., Santos, N. K. A. et al. (2005). Chemical-biological study of the essential oils of Hyptis martiusii, Lippia sidoides and Syzigium aromaticum against larvae of Aedes aegypti and Culex quinquefasciatus. Rev. Bras. Farmacogn., 15(4), 304-9. doi:10.1590/S0102-695X2005000400008
De Martino, L., Nazzaro, F., Mancini, E. & De Feo, V. (2014). In: Preedy VR, Watson RR. Essential oils from Mediterranean aromatic plants. The Mediterranean diet: an evidence-based approach. Elsevier, 1(58), 649-61. doi:10.1016/B978-0-12-407849-9.00058-0
Dias, C. N., Alves, L. P. L., Rodrigues, K. A. F., Brito, M. C. A., Rosa, C. S. & Amaral, F. M. M. (2015). Chemical composition and larvicidal activity of essential oils extracted from Brazilian legal Amazon plants against Aedes aegypti L. (Diptera: Culicidae). Hindawi, 2015(1), 1-8. doi:10.1155/2015/490765
Eschenmoser, A. & Arigoni, D. (2005). Revisited after 50 years: the "stereochemical interpretation of the biogenetic isoprene rule for the triterpenes." Helv. Chim. Acta, 88(12), 3011-50. doi:10.1002/hlca.200590245
Felipe, L. O. & Bicas, J. L. (2017). Terpenos, aromas e a química dos compostos naturais. Quím. Nova na Esc., 39(2), 120-30. doi:10.21577/0104-8899.20160068
Fioravanti, C. (2016). A maior diversidade de plantas do mundo. https://revistapesquisa.fapesp.br/a-maior-diversidade-de-plantas-do-mundo/
Galvão, J. G., Silva, V. F., Ferreira, S. G., França, F. R. M., Santos, D. A., Freitas, L. S. et al. (2015). β-cyclodextrin inclusion complexes containing Citrus Sinensis (L.) Osbeck essential oil: an alternative to control Aedes Aegypti larvae. Thermochim. Acta, 608(1), 14-9. doi:10.1016/j.tca.2015.04.001
Gershenzon, J. & Dudareva, N. (2007). The function of terpene natural products in the natural world. Nat. Chem. Biol., 3(1), 408-14. doi:10.1038/nchembio.2007.5
Gomes, S. V. F., Nogueira, P. C. L. & Moraes, V. R. S. (2011). Aspectos químicos e biológicos do gênero Lippia enfatizando Lippia gracilis Schauer. Eclect. Chem., 36(1), 64-77. doi:10.1590/S0100-46702011000100005
Guatimosim, P. (2020). Projeto Flora do Brasil 2020 lança vídeo sobre espécies vegetais do país. http://www.faperj.br/?id=3993.2.3
Jacques, L. (2016). A maior diversidade de plantas do mundo. https://nossofuturoroubado.com.br/maior-diversidade-de-plantas-do-mundo/
Kiran, S. R., Bhavani, K., Devi, P. S., Rao, B. R. R. & Reddy, K. J. (2006). Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour. Technol., 97(18), 2481-4. doi:10.1016/j.biortech.2005.10.003
Komalamisra, N., Trongtokit, Y., Rongsriyam, Y. & Apiwathnasorn, C. (2005). Screening for larvicidal activity in some Thai plants against four mosquito vector species. Southeast Asian J. Trop. Med. Public Health, 36(6), 1412-22. doi:10.1016/j.actatropica.2019.01.019
Koul, O., Suresh, W. & Dhaliwal, G. S. (2008). Essential oils as green pesticides: potential and constraints. Biopestic. Int., 4(1), 63-84. https://www.doc-developpement-durable.org/file/Culture/Arbres-Fruitiers/FICHES_ARBRES/Bael/Essential%20Oils%20as%20Green%20Pesticides_Potential%20and%20Constraints.pdf
Lima, T. C., Silva, T. K. M., Silva, F. L., Barbosa-Filho, J. M., Marques, M. O. M., Santos, R. L. C. et al. (2013). Larvicidal activity of Mentha x villosa Hudson essential oil, rotundifolone and derivatives. Chemosphere, 104(1), 37-43. doi:10.1016/j.chemosphere.2013.10.035
Lima, W. P., Chiaravalloti Neto, F., Macoris, M. L. G., Zuccari, D. A. P. C. & Dibo, M. R. (2009). Establishment of the feeding methodology of Aedes aegypti (Diptera-Culicidae) in Swiss mice and evaluation of the toxicity and residual effect of essential oil from Tagetes minuta L (Asteraceae), in populations of Aedes aegypti. Rev. Soc. Bras. Med. Trop., 42(6), 638-41. doi:10.1590/S0037-86822009000600005
Loomis, W. D. & Croteau, R. (2014). In: Stumpf, P. K. Biochemistry of terpenoids. Lipids: structure and function: the biochemistry of plants. Elsevier, 4(13), 364-410. https://www.elsevier.com/books/lipids-structure-and-function/stumpf/978-0-12-675404-9
Lutfi, M. & Roque, N. F. (2014). Histórias de Eugênias. Quím. Nova na Esc., 36(4), 252-60. doi:10.5935/0104-8899.20140030
Luz, T. R. S. A., Leite, J. A. C., Mesquita, L. S. S., Bezerra, S. A., Silveira, D. P. B., Mesquita, J. W. C. et al. (2020). Seasonal variation in the chemical composition and biological activity of the essential oil of Mesosphaerum suaveolens (L.) Kuntze. Ind. Crops Prod., 153(1), 1-8. doi:10.1016/j.indcrop.2020.112600
Maia, J. D., Corte, R. L., Martinez, J., Ubbink, J. & Prata, A. S. (2019). Improved activity of thyme essential oil (Thymus vulgaris) against Aedes aegypti larvae using a biodegradable controlled release system. Ind. Crops Prod., 136(1), 110-20. doi:10.1016/j.indcrop.2019.03.040
Mar, J. M., Silva, L. S., Azevedo, S. G., França, L. P., Goes, A. F. F., Santos, A. L. et al. (2018). Lippia origanoides essential oil: an efficient alternative to control Aedes aegypti, Tetranychus urticae and Cerataphis lataniae. Ind. Crops Prod., 111(1), 292-7. doi:10.1016/j.indcrop.2017.10.033
Marmitt, D. J., Rempel, C., Goettert, M. I. & Silva, A. C. (2015). Plants with potential antibacterial of national list medical plants of health system only interest: systematic review. Rev. Saúde Pública, 8(2), 135-51. https://docs.bvsalud.org/biblioref/2020/11/1129299/plantas-com-potencial-antibacteriano-da-relacao-nacional-de-pl_gy9BcVq.pdf
McMurry, J. (2011). Química orgânica – combo. São Paulo, Brazil: Cengage Learn.
Mendes, L. A., Martins, G. F., Valbon, W. R., Souza, T. S., Menini, L., Ferreira, A. et al. (2017). Larvicidal effect of essential oils from Brazilian cultivars of guava on Aedes aegypti L. Ind. Crops Prod., 108(1), 684-9. doi:10.1016/j.indcrop.2017.07.034
Mendonça, F. A. C., Silva, K. F. S., Santos, K. K., Ribeiro Júnior, K. A. L. & Sant'ana, A. E. G. (2005). Activities of some Brazilian plants against larvae of the mosquito Aedes aegypti. Phytotherapy, 76(7-8), 629-36. doi:10.1016/j.fitote.2005.06.013
Morais, L. A. S. (2009). Influência dos fatores abióticos na composição química dos óleos essenciais. Hortic. Bras., 27(2), 4050-63. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/143457/1/2009AA-051.pdf
Morais, S. M., Facundo, V. A., Bertini, L. M., Cavalcanti, E. S. B., Anjos Júnior, J. F., Ferreira, S. A. et al. (2007). Chemical composition and larvicidal activity of essential oils from Piper species. Biochem. Syst. Ecol., 35(10), 670-5. doi:10.1016/j.bse.2007.05.002
Moreira, M. F., Mansur, J. F. & Figueira-Mansur, J. (2012). Resistência e inseticidas: estratégias, desafios e perspectivas no controle de insetos. Natl. Inst. Sci. Technol. Mol. Entomol. http://www.inctem.bioqmed.ufrj.br/images/documentos/biblioteca/Capitulo_15_Resistencia_a_Inseticidas_-_Estrategias_Desafios_e_Perspectivas_no_Controle_de_Insetos.pdf
Nascimento, L. & Melnyk, A. (2016). A química dos pesticidas no meio ambiente e na saúde. Rev. Mangaio Acad., 1(1) 54-61. https://aedmoodle.ufpa.br/pluginfile.php/416613/mod_resource/content/1/A%20qu%C3%ADmica%20dos%20pesticidas%20no%20meio.pdf
Oliveira, F. C., Mafezoli, J., Barbosa, F. G., Santiago, G. M. P., Camelo, A. L. M. & Guedes, M. L. S. (2016). Chemical composition and biological activities of the essential oil from leaves of Lippia rigida. Chem. Nat. Compd., 52(6), 1121-2. doi:10.1007/s10600-016-1881-3
Porto, K. R. A., Roel, A. R., Silva, M. M., Coelho, R. M., Scheleder, E. J. D. & Jeller, A. H. (2008). Larvicidal activity of Anacardium humile Saint Hill oil on Aedes aegypti (Linnaeus, 1762) (Diptera, Culicidae). Rev. Soc. Bras. Med. Trop., 6(41), 586-9. doi:10.1590/S0037-86822008000600008
Pratti, D. L. A., Ramos, A. C., Scherer, R., Cruz, Z. M. A. & Silva, A. G. (2015). Mechanistic basis for morphological damage induced by essential oil from Brazilian pepper tree, Schinus terebinthifolia, on larvae of Stegomyia aegypti, the dengue vector. Parasites & Vectors, 8(1), 1-10. doi:10.1186/s13071-015-0746-0
Prophiro, J. S., Silva, M. A. N., Kanis, L. A., Rocha, L. C. B. P., Duque-Luna, J. E. & Silva, O. S. (2012). First report on susceptibility of wild Aedes aegypti (Diptera: Culicidae) using Carapa guianensis (Meliaceae) and Copaifera sp. (Leguminosae). Parasitol. Res., 110(2), 699-705. doi:10.1007/s00436-011-2545-7
Ramos, R. S., Rodrigues, A. B. L., Farias, A. L. F., Simões, R. C., Pinheiro, M. T., Ferreira, R. M. A. et al. (2017). Chemical composition and in vitro antioxidant, cytotoxic, antimicrobial, and larvicidal activities of the essential oil of Mentha piperita L. (Lamiaceae). Hindawi, 2017(1), 1-8. doi:10.1155/2017/4927214
Santos, A. J., Pina, L. T. S., Galvão, J. G., Trindade, G. G. G., Nunes, R. K. V., Santos, J. S. et al. (2020). Clay/PVP nanocomposites enriched with Syzygium aromaticum essential oil as a safe formulation against Aedes aegypti larvae. Appl. Clay Sci., 185(1), 1-7. doi:10.1016/j.clay.2019.105394
Santos, E. A., Carvalho, C. M., Costa, A. L. S., Conceição, A. S., Moura, F. B. P. & Santana, A. E. G. (2011). Bioactivity evaluation of plant extracts used in indigenous medicine against the Snail, Biomphalaria glabrata, and the larvae of Aedes aegypti: evidence-based complementary and alternative medicine. Hindawi, 2012(1), 1-9. doi:10.1155/2012/846583
Santos, G. K. N., Dutra, K. A., Barros, R. A., Câmara, C. A. G., Lira, D. D., Gusmão, N. B. et al. (2012). Essential oils from Alpinia purpurata (Zingiberaceae): chemical composition, oviposition deterrence, larvicidal and antibacterial activity. Ind. Crops Prod., 40(1), 254-60. doi:10.1016/j.indcrop.2012.03.020
Santos, L. L., Brandão, L. B., Martins, R. L., Rabelo, E. M., Rodrigues, A. B. L., Araújo, C. M. C. V. et al. (2019). Evaluation of the larvicidal potential of the essential oil Pogostemon cablin (Blanco) Benth in the control of Aedes aegypti. Pharmaceuticals, 12(2), 1-13. doi:10.3390/ph12020053
Santos, L. M. M., Nascimento, J. S., Santos, M. A. G., Marriel, N. B., Bezerra-Silva, P. C., Rocha, S. K. L. et al. (2017). Fatty acid-rich volatile oil from Syagrus coronata seeds has larvicidal and oviposition-deterrent activities against Aedes aegypti. Physiol. Mol. Plant Pathol., 100(1), 35-40. doi:10.1016/j.pmpp.2017.05.008
Silva, A. G., Almeida, D. L., Ronchi, S. N., Bento, A. C., Scherer, R., Ramos, A. C. et al. (2010). The essential oil of Brazilian pepper, Schinus terebinthifolia Raddi in larval control of Stegomyia aegypti (Linnaeus, 1762). Parasites & Vectors, 3(79), 1-7. doi:10.1186/1756-3305-3-79
Silva, A. M. A., Silva, H. C., Monteiro, A. O., Lemos, T. L. G., Souza, S. M., Militão, G. C. G. et al. (2020). Chemical composition, larvicidal and cytotoxic activities of the leaf essential oil of Bauhinia cheilantha (Bong.) Steud. S. Afr. J. Bot., 131(1), 369-73. doi:10.1016/j.sajb.2020.03.011
Silva, M. F. R., Bezerra-Silva, P. C., Lira, C. S., Albuquerque, B. N. L., Agra Neto, A. C., Pontual, E. V. et al. (2016). Composition and biological activities of the essential oil of Piper corcovadensis (Miq.) C. DC (Piperaceae). Exp. Parasitol., 165(1), 64-70. doi:10.1016/j.exppara.2016.03.017
Silva, P. T., Santos, H. S., Teixeira, A. M. R., Bandeira, P. N., Holanda, C. L., Vale, J. P. C. et al. (2019). Seasonal variation in the chemical composition and larvicidal activity against Aedes aegypti of essential oils from Vitex gardneriana Schauer. S. Afr. J. Bot., 124(1), 329-32. doi:10.1016/j.sajb.2019.04.036
Silva, R. C. S., Milet-Pinheiro, P., Silva, P. C. B., Silva, A. G., Silva, M. V., Navarro, D. M. A. F. et al. (2015). (E)-Caryophyllene and α-Humulene: Aedes aegypti oviposition detrents elucidated by gas chromatography-electrophysiological assay of Commiphora leptophloeos leaf oil. Plos One, 10(12), 1-14. doi:10.1371/journal.pone.0144586
Silva, W. J., Dória, G. A. A., Maia, R. T., Nunes, R. S., Carvalho, G. A., Blank, A. F. et al. (2007). Effects of essential oils on Aedes aegypti larvae: alternatives to environmentally safe insecticides. Bioresour. Technol., 99(8), 3251-5. doi:10.1016/j.biortech.2007.05.064
Soares, A. S. (2007). Lamiaceae in Rio Grande do Norte: taxonomy and conservation status. Master's thesis, Fed. Univ. Rio Gd Norte, Natal – RN, Brazil. https://repositorio.ufrn.br/bitstream/123456789/23464/1/ArthurDeSouzaSoares_DISSERT.pdf
Strub, D. J., Balcerzak, L., Niewiadomska, M., Kula, J., Sikora, M., Gibka, J. et al. (2014). Stereochemistry of terpene derivatives. Part 8: synthesis of novel terpenoids from (1S,4R)- and (1R,4S)-fenchone and their comparative odour characteristics. Asymmetry, 25(13-14), 1038-45. doi:10.1016/j.tetasy.2014.06.012
Sucen – Supt. Nac. Controle Endem. (2001). Segurança em controle químico de vetores. https://portalidea.com.br/cursos/396d45d6e40914b34e25fd98ed99d702.pdf
Trindade, F. T. T., Stabeli, R. G., Pereira, A. A., Facundo, V. A. & Almeida e Silva, A. (2013). Copaifera multijuga ethanolic extracts, oil resin, and its derivatives display larvicidal activity against Anopheles darlingi and Aedes aegypti (Diptera: Culicidae). Rev. Bras. Farmacogn., 23(3), 464-70. doi:10.1590/S0102-695X2013005000038
Voris, D. G. R., Dias, L. S., Lima, J. A., Lima, K. S. C., Lima, J. B. P. & Lima, A. L. S. (2018). Evaluation of larvicidal, adulticidal, and anticholinesterase activities of essential oils of Illicium verum Hook. f., Pimenta dioica (L.) Merr., and Myristica fragrans Houtt. against Zika virus vectors. Environ. Sci. Pollut. Res., 25(23), 22541-51. doi:10.1007/s11356-018-2362-y
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Madalena Machado Rocha; Raquel Deodato Silva Rodrigues; Pedro Henrique Vieira Guimarães; Joyce Kelly Marinheiro da Cunha Gonsalves
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.