Loss of Natural Habitats: High-Altitude Vegetation, Pantanal
DOI:
https://doi.org/10.33448/rsd-v11i3.26242Keywords:
Alpine vegetation; Multi-temporal composition; Remote sensing; Spatiotemporal; Vegetation index.Abstract
The objective of this study is to quantify the spatiotemporal variation of high-altitude grassland (Campos de Altitude) in two different study areas between 1985 and 2020. First, the types of vegetation present in both areas were classified using a false-color (Red, Green, Blue) composition, with the channels replaced by mid-infrared, near-infrared, red, respectively. Following the definition of vegetation classes and the creation of polygons over them, they were superimposed on the NDVI product (1985 and 2020) to obtain the maximum and minimum values of the index and to identify which value ranges each class would be in. Next, a multitemporal false-color composition was carried out with the modification of the Red channel by the NDVI 1985 product, the Green channel by the NDVI 2020 product and the Blue channel without any changes. The results show that the total area of Campos de Altitude decreased between 1985 and 2020 in both study areas, with area 1 losing 31.93% and area 2 losing 35.12%, whereas the vegetation of denser strata (arboreal) increased in its spatial distribution in both study areas, with area 2 gaining the most (230%). There was a noticeable increase in arboreal vegetation in the two study areas during the years analyzed. The tendency for the fraction of arboreal vegetation cover to increase is in line with the decrease in Campos de Altitude vegetation, and this phenomenon may be related to environmental factors such as temperature variations, amount of rainfall, solar radiation, and soil composition.
References
Bai, Y. et al. (2020). Climate warming benefits alpine vegetation growth in Three-River Headwater Region, China. Science of the Total Environment, 742: 1-10.
Berberoglu, S. et al. (2011). Mapping and monitoring of coastal wetlands of Cukurova Delta in the Eastern Mediterranean region. Biodivers. Conserv, 13: 615–633.
Brito, N. de M. (2011). Desenvolvimento econômico e mineração: uma abordagem da atividade em Corumbá, MS. Entre-Lugar, 4: 123-150.
Beniston, M. (2003). Climatic change in mountain regions: a review of possible impacts. Clim. Change, 59: 5–31.
Brasil. (2008). Instituto Nacional de Pesquisas Espaciais (INPE). Topodata: banco de dados geomorfométricos do Brasil. Variáveis geomorfométricas locais. São José dos Campos, 2008. <http://www.dsr.inpe.br/topodata/>.
Chen, B. et al. (2018). Dynamic monitoring of the Poyang Lake wetland by integrating Landsat and MODIS observations. ISPRS J. Photogramm. Remote Sens, 139: 75–87.
Dronova, I. et al. 2012. Landscape analysis of wetland plant functional types: the effects of image segmentation scale, vegetation classes and classification methods. Remote Sens. Environ, 127: 357–369.
EMBRAPA. (2021). Empresa Brasileira de Pesquisa Agropecuária. LANDSAT - Land Remote Sensing Satellite. 2021. Disponível em: https://www.embrapa.br/satelites-de-monitoramento/missoes/landsat. Acesso em: 28 jan. 2021.
ECOTRÓPICA – Fundação de apoio à vida nos trópicos. 2003. Plano de Manejo das RPPN’S Acurizal, Penha e Dorochê. Cuiabá, Mato Grosso. 125p.
Foley, J.A. et al. (2005). Global consequences of land use. Science, 309: 570–574.
Guerra, A. et al. (2020). Drivers and projections of vegetation loss in the Pantanal and surrounding ecosystems. Land Use Policy, 91: 104388.
Jeong, S. J. et al. (20110. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Chang. Biol, 17: 2385–2399.
Johnston, R. M. & Barson, M. M. (1993). Remote sensing of Australian wetlands: an evaluation of Landsat TM data for inventory and classification. Mar. Freshw. Res., 44: 235–252.
Junk, W. J. et al. (2006). Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquat. Sci., 68: 278–309.
Larcher, L.; Rabelo, A. & Viana, D. F. P. (2017). Rede De Proteção E Conservação Da Serra Do Amolar: Um Modelo De Conservação Integrado. In: João Carlos Ferreira de Melo Júnior; Therezinha Maria Novais de Oliveira. (Org.). Ciências ambientais: ensaios e perspectivas. 1ed. Joinville: Univille, v. 1, 225-240.
Han, X. et al. (2015). Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013. Remote Sens. Environ., 156: 426–437.
IHP – Instituto Homem Pantaneiro. 2012. Descobrindo o Paraíso: aspectos biológicos da reserva particular do patrimônio natural engenheiro Eliezer Batista – RPPN EEB/ Pantanal Sul. Org. Rabelo, A. C. P.; Moreira, V. F.; Bertassoni, A.; AOKI, C. Rio de Janeiro, RJ. 111 p.
LANDSAT. (2020). Imagem Landsat 8 OLI. Canais 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 e NDVI. Landsat-8 image courtesy of the U.S. Geological Survey. Imagem de Satélite. Órbita 227 ponto 073. De 28 de setembro de 2020. 2020.
LANDSAT. (2020). Imagem Landsat 8 OLI. Canais 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 e NDVI. Landsat-8 image courtesy of the U.S. Geological Survey. Imagem de Satélite. Órbita 227 ponto 072. De 28 de setembro de 2020. 2020.
LANDSAT. (1985). Imagem Landsat 5 TM. Canais 1, 2, 3, 4, 5, 6, 7 e NDVI. Landsat-5 image courtesy of the U.S. Geological Survey. Imagem de Satélite. Órbita 227 ponto 073. De 12 de setembro de 1985. 1985.
LANDSAT. (1985). Imagem Landsat 5 TM. Canais 1, 2, 3, 4, 5, 6, 7 e NDVI. Landsat-5 image courtesy of the U.S. Geological Survey. Imagem de Satélite. Órbita 227 ponto 072. De 27 de agosto de 1985. 1985.
Li, X. & Qu, Y. (2018). Evaluation of Vegetation Responses to Climatic Factors and Global Vegetation Trends using GLASS LAI from 1982 to 2010. Canadian Journal Of Remote Sensing, 44: 357–372.
Linscheid, N. et al. (2020). Towards a global understanding of vegetation-climate dynamics at multiple time scales. Biogeosciences, 17: 945–962.
Ma, X. et al. (2019). Sensitivity of Vegetation on Alpine and Subalpine Timberline in Qinling Mountains to Temperature Change. Forests, 10: 1-16.
Marengo, J. M. et al. (2021). Extreme Drought in the Brazilian Pantanal in 2019–2020: Characterization, Causes, and Impacts. Frontiers in Water, 3: 639204.
Mioto, C.L. et al. (2012). Contribuição à caracterização das sub-regiões do Pantanal. Rev Entre-Lugar, 3:165-180.
Um, S. et al. (2020). Monitoring the spatio-temporal dynamics of the wetland vegetation in Poyang Lake by Landsat and MODIS observations. Science of the Total Environment, 725: 138096.
Newbold, T. (2018). Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B Biol. Sci., 285: 20180792.
Pan, N. et al. (2018). Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sensing of Environment, 214: 59-72.
Peres, P.N. et al. (2016). Variação da Cobertura do Solo no Pantanal de 2000 a 2015 por Sensoriamento Remoto com Software e Dados Gratuitos. Anuário do Instituto de Geociências – UFRJ, 39: 116-123.
Pouliot, D. et al. (2009). Trends in vegetation NDVI from 1 km AVHRR data over Canada for the period 1985–2006. International Journal of Remote Sensing, 30: 149-168.
Pott, A. et al. (2011). Plant diversity of the Pantanal wetland. Brazilian Journal of Biology, 71: 265-273.
Pott, A. et al. (2000). Vegetação e uso da terra. p.111-131. In: SILVA J. S. V. (ed.). Zoneamento ambiental da borda oeste do Pantanal: Morraria do Urucum e adjacências. Embrapa Informação e Tecnologia, Brasília, DF. 365p.
QGIS Development Team, (2021). QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org.
Roque, F. O. et al. (2016). Upland habitat loss as a threat to Pantanal wetlands. Conserv. Biol., 30: 1131–1134.
Shen, M. et al. (2015). Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. National Science Review, 2: 454-467.
Silva, J. S. V. & Abdon, M. M. (1998). Delimitação do Pantanal Brasileiro e Suas Sub-regiões. Pesq. agropec. bras., 33: 1703-1711.
Souza, C. A. & Souza, J. B. (2010). Pantanal Mato-grossense: origem, evolução e as características atuais. Revista Eletrônica da Associação dos Geógrafos Brasileiros, 11: 34-54.
SOS-Pantanal, WWF-Brasil, Conservation-International, ECOA, Fundacion-AVINA. (2017). Monitoramento das alterações da cobertura vegetal e uso do solo na Bacia do Alto Paraguai Porção Brasileira-Período de analise: 2016 a 2017. Corumba. Embrapa Pantanal.
TOPODATA. (2008). Banco de dados geomorfométricos do Brasil. Variáveis geomorfométricas locais. São José dos Campos, 2008. http://www.webmapit.com.br/inpe/topodata/
Urbanetz, C. et al. (2012). Composição e Distribuição de Espécies Arbóreas em Gradiente Altitudinal, Morraria do Urucum, Brasil. Oecol. Aust., 16: 859-877.
Wamelink, W. et al. (2018). The role of abiotic soil parameters as a factor in the success of invasive plant species. Emerging Sci. J., 2: 308–365.
Wang, X. et al. (2014). Alpine Cold Vegetation Response to Climate Change in the Western Nyainqentanglha Range in 1972–2009. The Scientific World Journal, 2014: 1-9.
Zhang, R. et al. (2019). Grassland vegetation phenological variations and responses to climate change in the Xinjiang region, China. Quaternary International, 513: 56–65.
Zhang, J. et al. (2007). Evaluation of Grassland Dynamics in the Northern-Tibet Plateau of China Using Remote Sensing and Climate Data. Sensors, 7: 3312-3328.
Zeng, N. et al. (2019). Estimating grassland aboveground biomass on the Tibetan Plateau using a random forest algorithm. Ecological Indicators, 102: 479-487.
Zhou, J. et al. (2016). Alpine vegetation phenology dynamic over 16 yers and its covariation with climate in a semi-arid region of China. Science of the Total Environment, 572: 119-128.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Dhonatan Diego Pessi; Marco Antonio Diodato; Angélica Guerra; Normandes Matos da Silva; Alfredo Marcelo Grigio; Camila Leonardo Mioto; Vinícius de Oliveira Ribeiro; Geraldo Alves Damasceno Junior; Antonio Conceição Paranhos Filho
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.