A review on the effect of sodium hexametaphosphate on the structure of casein micelles

Authors

DOI:

https://doi.org/10.33448/rsd-v11i3.26428

Keywords:

Sodium hexametaphosphate; Milk turbidity; Dissociation of casein micelles.

Abstract

Sodium hexametaphosphate (SHMP) is commonly used to control acidity, stabilize and retard gelatinization of dairy products and in the melting of cheeses in the manufacture of processed cheeses. This salt dissociates the casein micelles present in milk, sequestering calcium ions. In previous studies, SHMP was shown to be the most efficient in dissociating casein micelles compared to other calcium scavengers. Variations in temperature and pH affect the mineral-protein balance and electrostatic interactions, leading to the disruption of casein micelles. Since the turbidity of a colloidal suspension, such as that of casein micelles in milk, is related to the size and spreading properties of the dispersed particles, dissociations of casein micelles are expected to reduce the turbidity of milk. This review describes recently developed strategies to overcome challenges related to milk turbidity using SHMP, but does not present their use in the cheese industry (melters). Optimization of the best conditions of pH, temperature and concentration of SHMP, can bring a new methodology for the development of translucent beverages and overcome solubility problems of concentrated milks with high protein content.

References

Anema, S. G., & Li, Y. (2003). Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size. Journal of dairy Research, 70(1), 73-83.

Anema, S. G. (2015). The effect of hexametaphosphate addition during milk powder manufacture on the properties of reconstituted skim milk. International Dairy Journal, 50, 58-65.

Anema, Skelte G.; & Klostermeyer. (1997). Henning. Heat-induced, pH-dependent dissociation of casein micelles on heating reconstituted skim milk at temperatures below 100 C. Journal of Agricultural and Food Chemistry, v. 45, n. 4, p. 1108-1115.

Awad, R. A., Abdel-Hamid, L. B., El-Shabrawy, S. A., & Singh, R. K. (2002). Texture and microstructure of block type processed cheese with formulated emulsifying salt mixtures. LWT-Food Science and Technology, 35(1), 54-61.

Bouchoux, A., Ventureira, J., Gésan-Guiziou, G., Garnier-Lambrouin, F., Qu, P., Pasquier, C., ... & Cabane, B. (2014). Structural heterogeneity of milk casein micelles: a SANS contrast variation study. Soft Matter, 11(2), 389-399.

Dalgleish, D. G. (2011). On the structural models of bovine casein micelles—review and possible improvements. Soft matter, 7(6), 2265-2272.

Dalgleish, D. G., & Corredig, M. (2012). The structure of the casein micelle of milk and its changes during processing. Annual review of food science and technology, 3, 449-467.

Eshpari, H., Tong, P. S., & Corredig, M. (2014). Changes in the physical properties, solubility, and heat stability of milk protein concentrates prepared from partially acidified milk. Journal of dairy science, 97(12), 7394-7401.

ICL, Especificação de Produto: Hexameta Fosfato de Sódio Grau Alimentício - Origem: EUA; EP-022 - Rev. 07.

Fox, P. F., McSweeney, P. L., Cogan, T. M., & Guinee, T. P. (Eds.). (2004). Cheese: Chemistry, Physics and Microbiology, Volume 1: General Aspects. Elsevier.

Gao, R., van Halsema, F. E. D., Temminghoff, E. J. M., van Leeuwen, H. P., van Valenberg, H. J. F., Eisner, M. D., & van Boekel, M. A. J. S. (2010). Modelling ion composition in simulated milk ultrafiltrate (SMUF) II. Influence of pH, ionic strength and polyphosphates. Food chemistry, 122(3), 710-715.

Glantz, M., Devold, T. G., Vegarud, G. E., Månsson, H. L., Stålhammar, H., & Paulsson, M. (2010). Importance of casein micelle size and milk composition for milk gelation. Journal of Dairy Science, 93(4), 1444-1451.

Gonzalez-Jordan, A., Thomar, P., Nicolai, T., & Dittmer, J. (2015). The effect of pH on the structure and phosphate mobility of casein micelles in aqueous solution. Food Hydrocolloids, 51, 88-94.

Ye, R., & Harte, F. (2013). Casein maps: effect of ethanol, pH, temperature, and CaCl2 on the particle size of reconstituted casein micelles. Journal of dairy science, 96(2), 799-805.

Holt, C., Carver, J. A., Ecroyd, H., & Thorn, D. C. (2013). Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods. Journal of dairy science, 96(10), 6127-6146.

Ingham, B., Smialowska, A., Erlangga, G. D., Matia-Merino, L., Kirby, N. M., Wang, C., ... & Carr, A. J. (2016). Revisiting the interpretation of casein micelle SAXS data. Soft Matter, 12(33), 6937-6953.

de Kort, E., Minor, M., Snoeren, T., van Hooijdonk, T., & van der Linden, E. (2011). Effect of calcium chelators on physical changes in casein micelles in concentrated micellar casein solutions. International Dairy Journal, 21(12), 907-913.

de Kort, E. J. (2012). Influence of calcium chelators on concentrated micellar casein solutions: from micellar structure to viscosity and heat stability.

de Kruif, C. G. (2014). The structure of casein micelles: A review of small-angle scattering data. Journal of Applied Crystallography, 47(5), 1479-1489.

de Kruif, C. G., & Huppertz, T. (2012). Casein micelles: size distribution in milks from individual cows. Journal of agricultural and food chemistry, 60(18), 4649-4655.

Holt, C., De Kruif, C. G., Tuinier, R., & Timmins, P. A. (2003). Substructure of bovine casein micelles by small-angle X-ray and neutron scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 213(2-3), 275-284.

Lazzaro, F., Saint-Jalmes, A., Violleau, F., Lopez, C., Gaucher-Delmas, M., Madec, M. N., ... & Gaucheron, F. (2017). Gradual disaggregation of the casein micelle improves its emulsifying capacity and decreases the stability of dairy emulsions. Food Hydrocolloids, 63, 189-200.

Lima, E. C. D. O., Alcantara, G. B., Damasceno, F. C., Moita Neto, J. M., & Galembeck, F. (2010). Fracionamento de polifosfato de sódio e caracterização por RMN de 31P: um experimento para aulas de físico-química. Química Nova, 33, 1991-1995.

McCarthy, N. A., Power, O., Wijayanti, H. B., Kelly, P. M., Mao, L., & Fenelon, M. A. (2017). Effects of calcium chelating agents on the solubility of milk protein concentrate. International Journal of Dairy Technology, 70(3), 415-423.

McMahon, D. J., & McManus, W. R. (1998). Rethinking casein micelle structure using electron microscopy. Journal of Dairy Science, 81(11), 2985-2993.

Mizuno, R., & Lucey, J. A. (2005). Effects of emulsifying salts on the turbidity and calcium-phosphate–protein interactions in casein micelles. Journal of Dairy Science, 88(9), 3070-3078.

Mizuno, R., & Lucey, J. A. (2007). Properties of milk protein gels formed by phosphates. Journal of Dairy Science, 90(10), 4524-4531.

Nogueira, M. H., Humblot, L., Singh, R. P., Dieude-Fauvel, E., Doumert, B., Nasser, S., ... & Peixoto, P. P. (2021). The heterogeneous substructure of casein micelles evidenced by SAXS and NMR in demineralized samples. Food Hydrocolloids, 117, 106653.

Orlien, V., Boserup, L., & Olsen, K. (2010). Casein micelle dissociation in skim milk during high-pressure treatment: Effects of pressure, pH, and temperature. Journal of dairy science, 93(1), 12-18.

Pandalaneni, K., Amamcharla, J. K., Marella, C., & Metzger, L. E. (2018). Influence of milk protein concentrates with modified calcium content on enteral dairy beverage formulations: Physicochemical properties. Journal of dairy science, 101(11), 9714-9724.

Power, O. M., Fenelon, M. A., O'Mahony, J. A., & McCarthy, N. A. (2019). Dephosphorylation of caseins in milk protein concentrate alters their interactions with sodium hexametaphosphate. Food chemistry, 271, 136-141.

Power, O. M., Fenelon, M. A., O'Mahony, J. A., & McCarthy, N. A. (2020). Influence of sodium hexametaphosphate addition on the functional properties of milk protein concentrate solutions containing transglutaminase cross-linked proteins. International Dairy Journal, 104, 104641.

Ramchandran, L., Luo, X., & Vasiljevic, T. (2017). Effect of chelators on functionality of milk protein concentrates obtained by ultrafiltration at a constant pH and temperature. Journal of Dairy Research, 84(4), 471-478.

Ranadheera, C. S., Liyanaarachchi, W. S., Dissanayake, M., Chandrapala, J., Huppertz, T., & Vasiljevic, T. (2019). Impact of shear and pH on properties of casein micelles in milk protein concentrate. Lwt, 108, 370-376.

Shinde, A. P., Meena, G. S., & Handge, J. U. (2021). Effect of sodium triphosphate and sodium hexametaphosphate on properties of buffalo milk protein concentrate 60 (BMPC60) powder. Journal of Food Science and Technology, 58(5), 1996-2006.

Silva, N. N., Casanova, F., Pinto, M. D. S., Carvalho, A. F. D., & Gaucheron, F. (2019). Casein micelles: from the monomers to the supramolecular structure. Brazilian Journal of Food Technology, 22.

Sinaga, H., Bansal, N., & Bhandari, B. (2017). Effects of milk pH alteration on casein micelle size and gelation properties of milk. International Journal of Food Properties, 20(1), 179-197.Singh, H. (2004). Heat stability of milk. International journal of dairy technology, 57(2‐3), 111-119.

Waugh, D. F. (1958). The interactions of α s-β- and κ-caseins in micelle formation. Discussions of the Faraday Society, 25, 186-192.

Wolfschoon‐Pombo, A. F., Böttger, D., & Lösche, K. (2012). Pufferkapazität mikrofiltrierter Magermilchkonzentrate. Chemie Ingenieur Technik, 4(84), 465-474.

Xu, Y., Liu, D., Yang, H., Zhang, J., Liu, X., Regenstein, J. M. & Zhou, P. (2016). Effect of calcium sequestration by ion-exchange treatment on the dissociation of casein micelles in model milk protein concentrates. Food Hydrocolloids, 60, 5.

Ye, R., & Harte, F. (2013). Casein maps: effect of ethanol, pH, temperature, and CaCl2 on the particle size of reconstituted casein micelles. Journal of dairy science, 96(2), 799-805.

Published

22/02/2022

How to Cite

OLIVEIRA, I. C. de .; PINTO, C. B. dos A.; CAMPOS, N. da S.; POMBO, A. F. W.; WALTER, A.; PERRONE, Ítalo T.; STEPHANI, R. A review on the effect of sodium hexametaphosphate on the structure of casein micelles. Research, Society and Development, [S. l.], v. 11, n. 3, p. e30611326428, 2022. DOI: 10.33448/rsd-v11i3.26428. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26428. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences