Detection of SARS-CoV-2 in saliva and salivary glands – a systematic review
DOI:
https://doi.org/10.33448/rsd-v11i3.26673Keywords:
Covid-19; Salivary gland; Saliva and infection.Abstract
At the beginning of the COVID-19 pandemic, contact with the saliva infected was observed to represent a form of contagion possibly related to the anatomical proximity between the upper respiratory tract and the oral cavity. Studies seem to indicate that SARS-COV-2 can infect epithelial cells of the salivary glands, and impacts the clinical practice of dental surgeons. This study aimed to collect current evidence on the presence of SARS-CoV-2 in salivary glands, its detection through saliva, and discuss the relevance of this knowledge in clinical dental practice. A systematic review was conducted in the databases Pubmed, Lilacs, Google Schoolar, Scielo, Cochrane and Medline in the period from November/2020 to May/2021. PRISMA guidelines and the anagram PICO were adopted to characterize the selected studies according to the inclusion criteria, which comprised prospective studies, with full text available online in the English or Portuguese language and published from the year 2020. Among the 17 selected articles, 2 prospective studies evaluated the presence of SARS-CoV-2 in the parenchyma of salivary glands and all 16 papers found the presence of SARS-CoV-2 in saliva. The size of the studies varied according to the type of study, and the total number of participants was 3677. This study ratifies saliva as a route of transmission, and it is crucial that all health care workers use personal protective equipment and adhere strictly to biosafety regulations.
References
Azzi, L., Carcano, G., Gianfagna, F., Grossi, P., Gasperina, D. D., Genoni, A., & Baj, A. (2020). Saliva is a reliable tool to detect SARS-CoV-2. Journal of Infection, 81(1), e45-e50. https://doi.org/10.1016/j.jinf.2020.04.005
Benvenuto, D., Giovanetti, M., Ciccozzi, A., Spoto, S., Angeletti, S., & Ciccozzi, M. (2020). The 2019‐new coronavirus epidemic: evidence for virus evolution. Journal of Medical Virology. 92(4), 455-459. https://doi.org/10.1002/jmv.25688
Burgueño-Rodríguez, G., Méndez, Y., Olano, N., Dabezies, A., Bertoni, B., Souto, J., & Soler, A. M. (2020). Ancestry and TPMT-VNTR Polymorphism: relationship with hematological toxicity in uruguayan patients with Acute lymphoblastic leukemia. Frontiers in Pharmacology, 11, 1-8. https://doi.org/10.3389/fphar.2020.594262
Cassinari, K., Alessandri-Gradt, E., Chambon, P., Charbonnier, F., Gracias, S., Beaussire, L., & Frebourg, T. (2021). Assessment of multiplex digital droplet RT-PCR as a diagnostic tool for SARS-CoV-2 detection in nasopharyngeal swabs and saliva samples. Clinical Chemistry, 67(5), 736-741. https://doi.org/10.1093/clinchem/hvaa323
Chen, L., Zhao, J., Peng, J., Li, X., Deng, X., Geng, Z., & Wang, S. (2020). Detection of SARS‐CoV‐2 in saliva and characterization of oral symptoms in COVID‐19 patients. Cell Proliferation, 53(12), e12923. https://doi.org/10.1111/cpr.12923
Chowdhury, P., Paul, S. K., Kaisar, S., & Moktadir, A. (2021). COVID-19 pandemic related supply chain studies: A systematic review. Transportation Research Part E: Logistics and Transportation Review, 148, 102271. https://doi.org/10.1016/j.tre.2021.102271
Griesemer, S. B., Slyke, G. V., Ehrbar, D., Strle, K., Yildirim, T., Centurioni, D. A., & George, K. S. (2021). Evaluation of specimen types and saliva stabilization solutions for SARS-CoV-2 testing. Journal of Clinical Microbiology, 59(5), e01418-e01420. https://doi.org/10.1128/JCM.01418-20
Güçlü, E., Koroglu, M., Yürümez, Y., Toptan, H., Kose, E., Güneysu, F., & Karabay, O. (2020). Comparison of saliva and oro-nasopharyngeal swab sample in the molecular diagnosis of COVID-19. Revista da Associação Médica Brasileira, 66(8), 1116-1121. https://doi.org/10.1590/1806-9282.66.8.1116
Herrera, L. A., Hidalgo-Miranda, A., Reynoso-Noverón, N., Meneses-García, A. A., Mendoza-Vargas, A., Reyes-Grajeda, J. P., & Escobar-Escamilla, N. (2021). Saliva is a reliable and accessible source for the detection of SARS-CoV-2. International Journal of Infectious Diseases, 105, 83-90. https://doi.org/10.1016/j.ijid.2021.02.009
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., & Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271-280. https://doi.org/10.1016/j.cell.2020.02.052
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., & Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497-506. https://doi.org/10.1016/s0140-6736(20)30183-5
McCormick-Baw, C., Morgan, K., Gaffney, D., Cazares, Y., Jaworski, K., Byrd, A., & Cavuoti, D. (2020). Saliva as an alternate specimen source for detection of SARS-CoV-2 in symptomatic patients using Cepheid Xpert Xpress SARS-CoV-2. Journal of clinical microbiology, 58(8), e01109-20. https://doi.org/10.1128/jcm.01109-20
Moreno-Contreras, J., Espinoza, M. A., Sandoval-Jaime, C., Cantú-Cuevas, M. A., Barón-Olivares, H., Ortiz-Orozco, O. D., & López, S. (2020). Saliva sampling and its direct lysis, an excellent option to increase the number of SARS-CoV-2 diagnostic tests in settings with supply shortages. Journal of Clinical Microbiology, 58(10), e01659. https://doi.org/10.1128/jcm.01659-20
Sakanashi, D., Asai, N., Nakamura, A., Miyazaki, N., Kawamoto, Y., Ohno, T., & Mikamo, H. (2021). Comparative evaluation of nasopharyngeal swab and saliva specimens for the molecular detection of SARS-CoV-2 RNA in Japanese patients with COVID-19. Journal of Infection and Chemotherapy, 27(1), 126-129. https://doi.org/10.1016/j.jiac.2020.09.027
Seneviratne, C. J., Balan, P., Ko, K. K. K., Udawatte, N. S., Lai, D., Ng, D. H. L., & Sim, X. Y. J. (2021). Efficacy of commercial mouth-rinses on SARS-CoV-2 viral load in saliva: randomized control trial in Singapore. Infection, 49(2), 305-311. https://doi.org/10.1007/s15010-020-01563-9
Song, J. W., Zhang, C., Fan, X., Meng, F. P., Xu, Z., Xia, P., & Zhang, J. Y. (2020). Immunological and inflammatory profiles in mild and severe cases of COVID-19. Nature Communications, 11(1), 1-10. https://doi.org/10.1038/s41467-020-17240-2
Tutuncu, E. E., Ozgur, D., & Karamese, M. (2021). Saliva samples for detection of SARS‐CoV‐2 in mildly symptomatic and asymptomatic patients. Journal of Medical Virology, 93(5), 2932-2937. https://doi.org/10.1002/jmv.26821
Vaz, S. N., Santana, D. S. de, Netto, E. M., Pedroso, C., Wang, W. K., Santos, F. D. A., & Brites, C. (2020). Saliva is a reliable, non-invasive specimen for SARS-CoV-2 detection. The Brazilian Journal of Infectious Diseases, 24(5), 422-427. https://doi.org/10.1016/j.bjid.2020.08.001
Williams, E., Bond, K., Zhang, B., Putland, M., & Williamson, D. A. (2020). Saliva as a non-invasive specimen for detection of SARS-CoV-2. Journal of Clinical Microbiology, 58(8), e00776. https://doi.org/10.1128/jcm.00776-20
Wyllie, A. L., Fournier, J., Casanovas-Massana, A., Campbell, M., Tokuyama, M., Vijayakumar, P., & Grubaugh, A. I. (2020). Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs. New England Journal of Medicine, 1-12. https://doi.org/10.1101/2020.04.16.20067835
Yamazaki, W., Matsumura, Y., Thongchankaew-Seo, U., Yamazaki, Y., & Nagao, M. (2021). Development of a point-of-care test to detect SARS-CoV-2 from saliva which combines a simple RNA extraction method with colorimetric reverse transcription loop-mediated isothermal amplification detection. Journal of Clinical Virology, 136, 104760. https://doi.org/10.1016/j.jcv.2021.104760
Zhong, F., Liang, Y. J., Xu, J. B., Chu, M., Tang, G. F., Hu, F. Y., & Liao, G. Q. (2020). Continuously high detection sensitivity of saliva, viral shedding in salivary glands and high viral load in patients with COVID-19. The Lancet, (20), 1-23. https://doi.org/10.2139/ssrn.3576869
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Lavínia Sampaio Bonfim; Bruna Carvalho Lopez Moreno; Anildo Alves de Brito Junior; Flávia Quadros Lima; Juliana Borges de Lima Dantas; Alena Ribeiro Alves Peixoto Medrado
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.