Evaluation of the effect of hydrocortisone in 2D and 3D HEp-2 cell culture
DOI:
https://doi.org/10.33448/rsd-v11i3.27021Keywords:
Stress; Carcinoma; 3D Culture; Hydrocortisone.Abstract
Introduction: Cancer is one of the diseases with the highest incidence globally and that associated with the patient's emotional state, can act positively or negatively in the treatment. Cortisol is a principal primary stress hormone in the human body. The corticoids can increase cell proliferation and reactive oxygen species that contribute to DNA damage. Prolonged exposure to stress can contribute to tissues becoming insensitive to cortisol, the primary human stress hormone. Objective: This study explores cortisol's influence on tumor cell development, particularly in human cells of carcinoma of the human laryngeal (HEp-2). Methodology: HEp-2 cells were exposed to increasing cortisol (hydrocortisone) concentrations for 24 or 48 hours, and cytotoxicity (MTT assay) proliferation assay (crystal violet assay), and immunolabeled 3D culture for fibronectin and FAK were analyzed. Results: The group treated with hydrocortisone showed a significant increase in mitochondrial activity, as for the evaluation by the violet crystal, the treated group showed similar behavior to the control. The 3D culture showed dispersed cells within 24 hours with reduced FAK labeling; however, no changes were observed within 48 hours. Conclusion: Although some cases favored corticosteroid use in cancer patients, a more detailed analysis is necessary before prescribing them.
References
Bedillion, M. F., Ansell, E. B., Thomas, G. A., (2019). Cancer treatment effects on cognition and depression: The moderating role of physical activity. Breast 44,73-80.
Blackadar, C. B., (2016). Historical review of the causes of cancer. World J Clin Oncol 7, 54-86.
Bomfim, G. F., Merighe, G. K. F., de Oliveira, S. A., Negrao, J. A., (2018). Effect of acute stressors, adrenocorticotropic hormone administration, and cortisol release on milk yield, the expression of key genes, proliferation, and apoptosis in goat mammary epithelial cells. J Dairy Sci. 101, 6486-6496.
Chae, J., Lee, C., (2019). The psychological mechanism underlying communication effects on behavioral intention: focusing on affect and cognition in the cancer context. Communication Research. 46, 597-618.
Dai, S., Mo, Y., Wang, Y., Xiang, B., Liao, Q., Zhou, M., Li, X., Li, Y., Xiong, W., Li, G., Guo, C., Zeng, Z., (2020). Chronic Stress Promotes Cancer Development. Front Oncol. 10, 1-10.
Dong, J., Li, J., Li, J., Cui, L., Meng, X., Qu, Y., Wang, H., (2019). The proliferative effect of cortisol on bovine endometrial epithelial cells. Reprod Biol Endocrinol. 17, 1-9.
Ferreira, Í. S., Araujo, A. S., Cajé, R. O., Lopes, A. P. (2021). Applications of Cognitive Behavioral Therapy in Cancer Patients: An integrative review. Research, Society and Development. 10, 1-16.
Iftikhar, A., Islam, M., Shepherd, S., Jones, S., Ellis, I. (2021). Cancer and Stress: Does It Make a Difference to the Patient When These Two
Challenges Collide? Cancers. 13, 163-191.
Lambert, M., Sabiston, C. M., Wrosch, C., Brunet, J. (2020). An investigation into socio‑demographic‑, health‑, and cancer‑related factors associated with cortisol and C‑reactive protein levels in breast cancer survivors: a longitudinal study. Breast Cancer 27, 1096–1106
Lillberg, K., Verkasalo, P. K., Kaprio, J., Teppo, L., Helenius, H., Koskenvuo, M., (2003). Stressful life events and risk of breast cancer in 10,808 women: a cohort study. Am J Epidemiol. 157, 415-423.
Manoli, I., Alesci, S., Blackman, M. R., Su, Y. A., Rennert, O. M., Chrousos, G. P., (2007). Mitochondria as key components of the stress response. Trends Endocrinol Metab. 18, 190-198.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da pesquisa científica. Ed. Santa Maria, RS: UFSM, NTE.
Reiche, E. M., Nunes, S. O., Morimoto, H. K., (2004). Stress, depression, the immune system, and cancer. Lancet Oncol. 5, 617-625.
Ruiz-Manzano, R. A., Lourdes, T. D., Segovia-Mendoza, M., Nava-Castro, K. E., Palacios-Arreola, M. I., Morales-Montor, J., (2019). Neuroimmunoendocrine interactions in tumorigenesis and breast cancer. in: lasfar, a., cohen-solal, k., editors. tumor progression and metastasis. London: IntechOpen.
Sephton, S. E., Sapolsky, R. M., Kraemer, H. C., Spiegel, D., (2000). Diurnal cortisol rhythm as a predictor of breast cancer survival. Journal of the National Cancer Institute. 92, 994–1000.
Seyfried, T. N., Shelton, L. M., Mukherjee, P., (2010). Does the existing standard of care increase glioblastoma energy metabolism? Lancet Oncol. 11, 811-813.
Shannon, S., Vaca, C., Jia, D., Entersz, I., Schaer, A., Carcione, J., Weaver, M., Avidar, Y., Pettit, R., Nair, M., Khan, A., Foty. R. A., (2015). Dexamethasone-Mediated Activation of Fibronectin Matrix Assembly Reduces Dispersal of Primary Human Glioblastoma Cells. PLoS One.10, 1-26.
Spiegel, D., Giese-Davis, J., (2003). Depression and cancer: mechanisms and disease progression. Biol Psychiatry. 54, 269-282.
Vitale, I., Manic, G., Galassi, C., Galluzzi, L., (2019). Stress responses in stromal cells and tumor homeostasis. Pharmacol Ther. 200, 55-68.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Marcelo de Oliveira Fonseca; Bruno Henrique Godoi; Newton Soares da Silva; Cristina Pacheco-Soares
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.