Use of Butaphosphan with Cyanocobalamin in High Producing Cows and Associations with Milk Yield and Dry Matter Intake
DOI:
https://doi.org/10.33448/rsd-v11i4.27045Keywords:
Dry matter intake; Organic phosphorus; Postpartum cows.Abstract
This study aimed to verify the effect of butaphosphan combined with cyanocobalamin (B+C) on dry matter intake (DMI) and milk yield in high producing dairy cows. Eighteen multiparous Holstein cows managed in a compost barn system were enrolled on a calving date and remained under observation until 28 days in milk (DIM). The B+C group administered at 2500 mg of butaphosphan and 1.25 mg of cyanocobalamin (25 mL/cow/day, n = 9), or the control group (NaCl 0.9% administered at 25 mL/cow/day, n = 9,) receiving injections at calving, and at day 3 and 7 post-partum. The DMI, feed efficiency, and DMI/% body weight were evaluated until 21 DIM and the milk yield, rumination, activity, and lying time until 28 DIM. Various metabolites were evaluated at 0, 3, 7, 14, 21, and 28 DIM. DMI did not change with treatment. Milk yield was more significant in the B+C group than in the control group, with an increase of 3.66 kg/milk/d. The maintenance of DMI and the greater milk yield in the B+C group may suggest that the use of B+C can improve feed efficiency. No treatment effect was observed for concentrations of serum glucose, NEFA, BHB, and acetone, however, albumin was higher in B+C than in control. No effect was observed on milk composition. Our results suggest that B+C improves milk yield and feed efficiency by modulating the DMI.
References
AOAC (1975). Association of Official Analytical Chemists, Official Methods of Analysis, 12th ed, Washington.
AOAC (1997). Association of Official Analytical Chemists, Official Methods of Analysis, (16th ed.), Washington.
Berg, J. M., Tymoczko, J. L. & Stryer, L. (2006). Glycolysis and gluconeogenesis, In: Biochemistry, 6th ed. W. H. Freeman, 433-474.
Bertoni, G. & Trevisi, E. (2013). Use of the liver activity index and other metabolic variables in the assessment of metabolic health in dairy herds. Veterinary Clinics of North America: Food Animal Practice 29, 413-431.
Browne, R. W., Koury, S. T., Marion, S., Wilding, G., Muti, P. & Trevisan, M. (2007). Accuracy and biological variation of human serum paraoxonase 1 activity and polymorphism (Q192R) by kinetic enzyme assay. Clinical Chemistry 53, 310-317.
Chapinal, N., Carson, M., Duffield, T. F., Capel, M., Godden, S., Overton, M., Santos, J. E. P. & LeBlanc, S. J. (2011). The association of serum metabolites with clinical disease during the transition period. Journal of Dairy Science 94, 4897-4903.
Chizzotti, M. L., Machado, F. S., Valente, E. E. L., Pereira, L. G. R., Campos, M. M., Tomich, T. R., Coelho, S. G. & Ribas M. N. (2015). Technical note: Validation of a system for monitoring individual feeding behavior and individual feed intake in dairy cattle. Journal of Dairy Science. 9, 3438–3442.
Coleman, D. N., Alharthi, A. S. & Liang, Y. (2021). Multifaceted role of one-carbon metabolism on immunometabolic control and growth during pregnancy, lactation and the neonatal period in dairy cattle. J Animal Sci Biotechnol 12, 27 (2021). https://doi.org/10.1186/s40104-021-00547-5
Connor, E. E. (2015). Invited review: Improving feed efficiency in dairy production: challenges and possibilities. Animal 9, 395-408.
Cunningham, J. G., 2002. Textbook of Veterinary Physiology, (3rd ed.) W.B. Saunders Co, Philadelphia.
Cuteri, V., Nisoli, L., Attili, A.R., Tejeda, A.R., Preziuso, S. & Fruganti, A. (2008). Clinical field evaluation of a butafosfan+ vitamin B12 compound (Phosphorum B12/Catosal) in the treatment of subclinical ketosis in dairy cows. Hungarian Veterinary Journal 130, 16-17.
Drackley, J. K. . (1999). Biology of dairy cows during the transition period: the final frontier? Journal of Dairy Science 82, 2259-2273.
Drackley, J. K. & Cardoso, F. C. (2014). Prepartum and postpartum nutritional management to optimize fertility in high-yielding dairy cows in confined TMR systems. Animal 8, 5-14.
Easley, J. F., McCall, J. T., Davis, G. K. & Shirley, R. L. (1965). Analytical methods for feeds and tissues. Nutrition Laboratory, Departament of Animal Science, University of Florida, Gainesville.
Edmonson, A. J., Lean, I. J., Weaver, L. D., Farver, T. & Webster, G. (1989). A body condition scoring chart for Holstein dairy cows. Journal of Dairy Science 72, 68-78.
Eisenberg, T., Schroeder, S., Andryushkova, A., Pendl, T., Küttner, V., Bhukel, A., Mariño, G., Pietrocola, F., Harger, A. & Zimmermann, A. (2014). Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme a stimulates autophagy and prolongs lifespan. Cell Metabolism 19, 431-444.
French, P.D. (2006). Dry matter intake and blood parameters of nonlactating Holstein and Jersey cows in late gestation. Journal of Dairy Science 89, 1057-1061.
Fürll, M., Deniz, A., Westphal, B., Illing, C. & Constable, P.D. (2010). Effect of multiple intravenous injections of butaphosphan and cyanocobalamin on the metabolism of periparturient dairy cows. Journal of Dairy Science 93, 4155-4164.
Gaal, T., Ribiczeyne-Szabo, P., Stadler, K., Jakus, J., Reiczigel, J., Kover, P., Mezes, M. & Sumeghy, L. (2006). Free radicals, lipid peroxidation and the antioxidant system in the blood of cows and newborn calves around calving. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology 143, 391-396.
Girma, D. D., Ma, L., Wang, F., Jiang, Q. R., Callaway, T. R., Drackley, J. K. & Bu1, D. P. (2018). Effects of close-up dietary energy level and supplementing rumen-protected lysine on energy metabolites and milk production in transition cows. Journal of Dairy Science. 102, 7059–7072.Goff, J.P., Liesegang, A., Horst, R.L. (2014). Diet-induced pseudohypoparathyroidism: A hypocalcemia and milk fever risk factor. Journal of Dairy Science 97, 1520-1528.
Gohary, K. & LeBlanc, S. J. (2018). Cost of retained fetal membranes for dairy herds in the United States. Journal of the American Veterinary Medical Association 252, 1485-1489.
Gordon, J. L., LeBlanc, S. J. & Duffield, T. F. (2013). Ketosis treatment in lactating dairy cattle. Veterinary Clinics of North America: Food Animal Practice 29, 433-445.
Gordon, J. L., LeBlanc, S. J., Kelton, D. F., Herdt, T. H., Neuder, L. & Duffield, T. F. (2017). Randomized clinical field trial on the effects of butaphosphan-cyanocobalamin and propylene glycol on ketosis resolution and milk production. Journal of Dairy Science 100, 3912-3921.
Grummer, R. R. (2007). Strategies to improve fertility of high yielding dairy farms: management of the dry period. Theriogenology 68, S281-S288.
Grummer, R. R. (2008). Nutritional and management strategies for the prevention of fatty liver in dairy cattle. The Veterinary Journal 176, 10-20.
Grummer, R. R., Mashek, D. G. & Hayirli, A. (2004). Dry matter intake and energy balance in the transition period. Veterinary Clinics of North America: Food Animal Practice 20, 447-470.
Halliwell, B. (1988). Albumin an important extracellular antioxidant? Biochemical Pharmacology 37, 569-571.
Hammon, D. S., Evjen, I. M., Dhiman, T. R., Goff, J. P. & Walters, J. L. (2006). Neutrophil function and energy status in Holstein cows with uterine health disorders. Veterinary Immunology and Immunopathology 113, 21-29.
Harder, I., Stamer, E., Junge, W. & Thaller, G. (2019). Lactation curves and model evaluation for feed intake and energy balance in dairy cows. Journal of Dairy Science 102, 7204-7216.
Harmon, R. J. (1994). Symposium-mastitis and genetic evaluation for somatic-cell count-physiology of mastitis and factors affecting somatic-cell counts. Journal of Dairy Science 77, 2103-2112.
Heinrichs, A. J., Erb, H. N., Rogers, G. W., Cooper, J. B. & Jones, C. M. (2007). Variability in Holstein heifer heart-girth measurements and comparison of prediction equations for live weight. Preventive Veterinarie Medicine 78, 333-338.
Heuer, C., Van Straalen, W. M., Schukken, Y. H., Dirkzwager, A. & Noordhuizen, J. P. T. M. (2000). Prediction of energy balance in a high yielding dairy herd in early lactation: model development and precision. Livestock Production Science 65, 91-105.
Ingvartsen, K. L. (2006). Feeding-and management-related diseases in the transition cow: Physiological adaptations around calving and strategies to reduce feeding-related diseases. Animal Feed Science and Technology 126, 175-213.
Jacometo, C. B., Zhou, Z., Luchini, D., Trevisi, E., Correa, M. N. & Loor, J. J. (2016). Maternal rumen-protected methionine supplementation and its effect on blood and liver biomarkers of energy metabolism, inflammation, and oxidative stress in neonatal Holstein calves. Journal of Dairy Science 99, 6753-6763.
Jain, N.C. (1993). Essentials of veterinary hematology. Lea & Febiger, Philadelphia.
Kreipe, L., Deniz, A., Bruckmaier, R.M. & van Dorland, H.A. (2011). First report about the mode of action of combined butafosfan and cyanocobalamin on hepatic metabolism in nonketotic early lactating cows. Journal of Dairy Science 94, 4904-4914.
LeBlanc, S., (2010). Monitoring metabolic health of dairy cattle in the transition period. Journal of Reproduction and Development 56 Suppl, S29-35.
Leiber, F., Holinger, M., Zehner, N., Dorn, K., Probst, J. K. & Neff, A. S. (2016). Intake estimation in dairy cows fed roughage-based diets: an approach based on chewing behaviour measurements. Applied Animal Behaviour Science 185, 9-14.
Mattei, P. (2017). Efeitos do butafosfan sobre o processo inflamatório em camundongas desafiadas com endotoxina bacteriana. Master Thesis, Master, Federal Univesrity of Pelotas.
McArt, J. A. A., Nydam, D. V., Ospina, P. A. & Oetzel, G. R. (2011). A field trial on the effect of propylene glycol on milk yield and resolution of ketosis in fresh cows diagnosed with subclinical ketosis. Journal of Dairy Science 94, 6011-6020.
Mcdowell, L. R. (1992). Minerals in animal and human nutrition: comparative aspects to human nutrition. Elsevier, Amsterdam.
Moallem, U. (2016). Future consequences of decreasing marginal production efficiency in the high-yielding dairy cow. Journal of Dairy Science 99, 2986-2 Mohammadi Barimanloo, A., Chalmeh, A., Pourjafar, M., & Mirzaei, A. (2002). Effects of intravenous butaphosphan and cyanocobalamin to late pregnant ewes on the metabolic indices around parturition and weight gain of their lambs after birth. Veterinary Medicine and Science, 00, 1– 11. https://doi.org/10.1002/vms3.687995.
NRC (2001). Nutrient requirements of dairy cattle, 7th ed. Academies Press, Washington.
Nuber, U., van Dorland, H. A. & Bruckmaier, R. M. (2016). Effects of butafosfan with or without cyanocobalamin on the metabolism of early lactating cows with subclinical ketosis. Journal of Animal Physiology and Animal Nutrition 100, 146-155.
Osorio, J. S., Trevisi, E., Li, C., Drackley, J. K., Socha, M. T. & Loor, J. J. (2016). Supplementing Zn, Mn, and Cu from amino acid complexes and Co from cobalt glucoheptonate during the peripartal period benefits p/ostpartal cow performance and blood neutrophil function. Journal of Dairy Science 99, 1868-1883.
Oetzel, G. R. (2004). Monitoring and testing dairy herds for metabolic disease. Veterinary Clinics of North America: Food Animal Practice 20, 651-674. Ospina, P. A., Nydam, D. V., Stokol, T. & Overton, T. R. (2010). Evaluation of nonesterified fatty acids and beta-hydroxybutyrate in transition dairy cattle in the northeastern United States: Critical thresholds for prediction of clinical diseases. Journal of Dairy Science 93, 546-554.
Pereira, R. A., Silveira, P. A., Montagner, P., Schneider, A., Schmitt, E., Rabassa, V. R., Pfeifer, L. F., Del Pino, F. A., Pulga, M. E. & Correa, M. N. (2013). Effect of butaphosphan and cyanocobalamin on postpartum metabolism and milk production in dairy cows. Animal 7, 1143-1147.
Pérez-Báez, J., Risco, C. A., Chebel, R. C., Gomes, G. C., Greco, L. F., Tao, S., Thompson, I. M., Amaral, B. C., Zenobi, M. G. & Martinez, N. (2019). Association of dry matter intake and energy balance prepartum and postpartum with health disorders postpartum: Part I. Calving disorders and metritis. Journal of Dairy Science 102, 9138-9150.
Peters, T. (1995). All about albumin: biochemistry, genetics, and medical applications. Academic press, San Diego.
Raboisson, D., Mounié, M. & Maigne, E. (2014). Diseases, reproductive performance, and changes in milk production associated with subclinical ketosis in dairy cows: A meta-analysis and review. Journal of Dairy Science 97, 7547-7563.
Rollin, E., Berghaus, R. D., Rapnicki, P., Godden, S. M. & Overton, M. W. (2010). The effect of injectable butaphosphan and cyanocobalamin on postpartum serum beta-hydroxybutyrate, calcium, and phosphorus concentrations in dairy cattle. Journal of Dairy Science 93, 978-987.
Schirmann, K., Chapinal, N., Weary, D. M., Heuwieser, W. & Von Keyserlingk, M. A. G. (2012) . Rumination and its relationship to feeding and lying behavior in Holstein dairy cows. Journal of Dairy Science 95, 3212-3217.
Sheldon, I. M., Lewis, G. S., LeBlanc, S. J. & Gilbert, R. O. (2006). Defining postpartum uterine disease in cattle. Theriogenology 65, 1516-1530.
Shirley, J. E. (2006). Feed efficiency is an important management tool for dairy producers, In: High Plains Dairy Conference, Kansas, pp. 63-67.
Suriyasathaporn, W., Heuer, C., Noordhuizen-Stassen, E. N. & Schukken, Y. H. (2000). Hyperketonemia and the impairment of udder defense: a review. Veterinary Research 31, 397-412.
Tabeleão, V. C., Pereira, R. A., Prietsch, R. d. F., Feijó, J. O., Bondan, C., Mattei, P., Schmitt, E., Del Pino, F. A. B. & Corrêa, M. N. (2017). Butafosfan e cianocobalamina: efeitos indiretos na recuperação da glândula mamária de vacas leiteiras após mastite clínica. Science and Animal Health 4, 238-254.
Teixeira, J. C., Teixeira, L. F. A. C. (1998). Do alimento ao leite: entenda a função do rúmen. UFLA - FAEPE, Lavras.
Trevisi, E., Amadori, M., Cogrossi, S., Razzuoli, E. & Bertoni, G. (2012). Metabolic stress and inflammatory response in high-yielding, periparturient dairy cows. Research in Veterinary Science 93, 695-704.
Tyrrell, H. F. & Reid, J. T. (1965). Prediction of the energy value of cow's milk. Journal of Dairy Science 48, 1215-1223.
Van Soest, P. & Robertson, J. B. (1985). Analysis of forages and fibrous foods. Cornell University, Ithaca.
Vailati- Riboni, M., Zhou, Z., Jacometo, C. B., Minuti, A., Trevisi, E., Luchini, D. N. & Loor, J. J. (2017). Supplementation with rumen-protected methionine or choline during the transition period influences whole-blood immune response in periparturient dairy cows. Journal of Dairy Science 100, 3958-3968.
Weaver, S. R., Laporta, J., Moore, S. A. E. & Hernandez, L. L. (2016). Serotonin and calcium homeostasis during the transition period. Domestic Animal Endocrinology 56, S147-S154.
Yuan, K., Shaver, R. D., Bertics, S. J., Espineira, M. & Grummer, R. R. (2012). Effect of rumen-protected niacin on lipid metabolism, oxidative stress, and performance of transition dairy cows. Journal of Dairy Science 95, 2673-2679.
Zhang, X., Wu, X. Q., Lu, S., Guo, Y. L. & Ma, X. (2006). Deficit of mitochondria-derived ATP during oxidative stress impairs mouse MII oocyte spindles. Cell Research 16, 841-850.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Camila Pizoni; Vinicius Izquierdo; Rosana Klaus; Ederson dos Santos; Laura Valadão Vieira; Antônio Amaral Barbosa; Kauani Cardoso; Bruna Velasquez; Francisco Del Pino; Viviane Rabassa ; Cássio Brauner; Marcio Nunes Corrêa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.