Probiotics – a sword or a shield in COVID-19 outcome?

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.27165

Keywords:

Microbiota; Dysbiosis; COVID-19; Rational use of antibiotics.

Abstract

How extensively frenzy could a viral infection cause? The virus of the betacoronavirus family, SARS-CoV-2, agent of COVID-19, has shaken economic and health structures around the world since the end of 2019. There are several attempts to prevent the spread of this virus, from effective sanitary measures, or the "gold rush" for drug repositioning, to the accelerated development of vaccines. In this sense, the empirical use of antibiotics has increased even more in hospitalized patients to avoid bacterial coinfections, which could be an aggravating factor in unfavorable clinical outcomes. However, the non-rational use of these drugs, in addition to contributing to the emergence of multidrug-resistant microorganisms, can contribute to a worrying situation, intestinal dysbiosis, an event with "pleiotropic" proportions, which can significantly worsen SARS- CoV-2. Different studies report that hospitalized patients with COVID-19 have shown a reduction in the population of probiotic butyrate-producing bacteria, such as Faecalibacterium prausnitzii, in addition to a reduction in the Firmicute/Bacteroidetes ratio and an increase in the proportion of Actinobacteria, among other opportunistic pathogens. This imbalance in the gut microbiota has been correlated with increased pro-inflammatory biochemical indicators and reduced anti-inflammatory drugs, which contribute to unfavorable outcomes. Thus, understanding the harmonic and disharmonious microbial interactions in the context of COVID-19 can help develop non-pharmacological strategies capable of modulating the host response and avoiding complications, particularly concerning patients with comorbidities.

References

Abd-Elsalam, S., Esmail, E. S., Khalaf, M., Abdo, E. F., Medhat, M. A., El Ghafar, M. S. A., Ahmed, O. A., Soliman, S., Serangawy, G. N., & Alboraie, M. (2020). Hydroxychloroquine in the treatment of COVID-19: A multicenter randomized controlled study. American Journal of Tropical Medicine and Hygiene, 103(4), 1635–1639. https://doi.org/10.4269/ajtmh.20-0873

Abelenda-Alonso, G., Padullés, A., Rombauts, A., Gudiol, C., Pujol, M., Alvarez-Pouso, C., Jodar, R., & Carratalà, J. (2020). Antibiotic prescription during the COVID-19 pandemic: A biphasic pattern. Infection Control and Hospital Epidemiology, 41(11), 1371–1372. https://doi.org/10.1017/ice.2020.381

Abreu, J. A. C. de, & Silva, F. B. A. (2021). A double-edged sword : bacterias & Covid-19. Brazilian Journal of Development, 7(5), 53750–53769. https://doi.org/10.34117/bjdv7n5-670

Adeiza, S. S., Shuaibu Bello, A., & Shuaibu, M. G. (2020). Random Effects Meta-Analysis of COVID-19/S. Aureus Partnership in Co-Infection. SSRN Electronic Journal, 15, 1–10. https://doi.org/10.2139/ssrn.3724705

Agência Nacional de Vigilância Sanitária. (2021a). Anvisa aprova o uso emergencial de mais uma associação de anticorpos contra o novo coronavírus. https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/anvisa-aprova-o-uso-emergencial-de-mais-uma-associacao-de-anticorpos-contra-o-novo-coronavirus

Agência Nacional de Vigilância Sanitária. (2021b). Anvisa aprova registro da vacina da Fiocruz/AstraZeneca e de medicamento contra o coronavírus. Agência Nacional de Vigilância Sanitária. https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2021/anvisa-aprova-registro-da-vacina-da-fiocruz-astrazeneca-e-de-medicamento-contra-o-coronavirus

Agência Nacional de Vigilância Sanitária. (2021c). Aprovado uso emergencial de anticorpos para tratamento de COVID-19. https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2021/aprovado-uso-emergencial-de-anticorpos-para-tratamento-de-covid-19

Ahmed, S., Karim, M. M., Ross, A. G., Hossain, M. S., Clemens, J. D., Sumiya, M. K., Phru, C. S., Rahman, M., Zaman, K., Somani, J., Yasmin, R., Hasnat, M. A., Kabir, A., Aziz, A. B., & Khan, W. A. (2021). A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. International Journal of Infectious Diseases, 103, 214–216. https://doi.org/10.1016/j.ijid.2020.11.191

Aktas, B., & Aslim, B. (2020). Gut-lung axis and dysbiosis in COVID-19. Turkish Journal of Biology, 44(Special issue 1), 265–272. https://doi.org/10.3906/biy-2005-102

Aleksandrova, K., Romero-Mosquera, B., & Hernandez, V. (2017). Diet, gut microbiome and epigenetics: Emerging links with inflammatory bowel diseases and prospects for management and prevention. Nutrients, 9(9), 1–13. https://doi.org/10.3390/nu9090962

Andreani, J., Le, M., Du, I., Jardot, P., & Rolland, C. (2020). In vitro testing of combined hydroxychloroquine and azithromycin on SARS- CoV-2 shows synergistic effec. Microbial Pathogenesis, 145. https://doi.org/doi.org/10.1016/j.micpath.2020.104228

Araújo, L. O., Freitas, P. J. F. de, Abreu, J. A. C. de, Freitas, N. L. de, & Brandão, F. (2021). Coinfecção Com Staphylococcus Aureus Como Agravante Da Covid-19. Revista Unimontes Científica, 23(1), 1–20. https://doi.org/10.46551/ruc.v23n1a03

Arhcer, D. L., & Kramer, D. C. (2020). The Use of Microbial Accessible and Fermentable Carbohydrates and/or Butyrates as Supportive Treatment for Patients With Coronavirus SARS-CoV-2 Infection. Frontiers in Medicine, 7. https://doi.org/10.3389/fmed.2020.00292

Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S. A., Rouphael, N., Creech, C. B., McGettigan, J., Khetan, S., Segall, N., Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L., … Zaks, T. (2021). Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. New England Journal of Medicine, 384(5), 403–416. https://doi.org/10.1056/nejmoa2035389

Baghbani, T., Nikzad, H., Azadbakht, J., Izadpanah, F., & Haddad Kashani, H. (2020). Dual and mutual interaction between microbiota and viral infections: a possible treat for COVID-19. Microbial Cell Factories, 19(1), 1–25. https://doi.org/10.1186/s12934-020-01483-1

Barko, P. C., McMichael, M. A., Swanson, K. S., & Williams, D. A. (2018). The Gastrointestinal Microbiome: A Review. Journal of Veterinary Internal Medicine, 32(1), 9–25. https://doi.org/10.1111/jvim.14875

Bassis, C. M., Erb-Downward, J. R., Dickson, R. P., Freeman, C. M., Schmidt, T. M., Young, V. B., Beck, J. M., Curtis, J. L., & Huffnagle, G. B. (2015). Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio, 6(2), 1–10. https://doi.org/10.1128/mBio.00037-15

Baud, D., Dimopoulou Agri, V., Gibson, G. R., Reid, G., & Giannoni, E. (2020). Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic. Frontiers in Public Health, 8(May), 1–5. https://doi.org/10.3389/fpubh.2020.00186

Beck, J. M. (2014). ABCs of the lung microbiome. Annals of the American Thoracic Society, 11(SUPPL. 1), 5–8. https://doi.org/10.1513/AnnalsATS.201306-188MG

Beigel, J. H., Tomashek, K. M., Dodd, L. E., Mehta, A. K., Zingman, B. S., Kalil, A. C., Hohmann, E., Chu, H. Y., Luetkemeyer, A., Kline, S., Lopez de Castilla, D., Finberg, R. W., Dierberg, K., Tapson, V., Hsieh, L., Patterson, T. F., Paredes, R., Sweeney, D. A., Short, W. R., … Lane, H. C. (2020). Remdesivir for the Treatment of Covid-19 — Final Report. New England Journal of Medicine, 383(19), 1813–1826. https://doi.org/10.1056/nejmoa2007764

Belkaid, Y., & Harrison, O. J. (2017). Homeostatic Immunity and the Microbiota. Immunity, 46(4), 562–576. https://doi.org/10.1016/j.immuni.2017.04.008

Bhat, M. I., & Kapila, R. (2017). Dietary metabolites derived from gut microbiota: Critical modulators of epigenetic changes in mammals. Nutrition Reviews, 75(5), 374–389. https://doi.org/10.1093/nutrit/nux001

Blaser, M. J. (2014). Missing Microbes : How the Overuse of Antibiotics Is Fueling Our Modern Plagues. Henry Holt and Company.

Bolduc, J.-F., Hany, L., Barat, C., Ouellet, M., & Tremblay, M. J. (2017). Epigenetic Metabolite Acetate Inhibits Class I/II Histone Deacetylases, Promotes Histone Acetylation, and Increases HIV-1 Integration in CD4 + T Cells. Journal of Virology, 91(16). https://doi.org/10.1128/jvi.01943-16

Borba, M. G. S., Val, F. F. A., Sampaio, V. S., Alexandre, M. A. A., Melo, G. C., Brito, M., Mourão, M. P. G., Brito-Sousa, J. D., Baía-da-Silva, D., Guerra, M. V. F., Hajjar, L. A., Pinto, R. C., Balieiro, A. A. S., Pacheco, A. G. F., Santos, J. D. O., Naveca, F. G., Xavier, M. S., Siqueira, A. M., Schwarzbold, A., & Lacerda, M. V. G. (2020). Effect of High vs Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: A Randomized Clinical Trial. JAMA Network Open, 3(4), e208857. https://doi.org/10.1001/jamanetworkopen.2020.8857

Borges, F. M., Paula, T. O. de, Gameiro, J., Silva, V. L. da, & Diniz, C. G. (2014). O papel da microbiota na modulação da homeostase dos hospedeiros: correlação entre micobioma intestinal e obesidade. HU Revista, 40(1 e 2), 107–116. https://periodicos.ufjf.br/index.php/hurevista/article/view/2452/932

Bottari, B., Castellone, V., & Neviani, E. (2020). Probiotics and Covid-19. International Journal of Food Sciences and Nutrition, 0(0), 1–7. https://doi.org/10.1080/09637486.2020.1807475

Brandão, F., Esher, S. K., Ost, K. S., Pianalto, K., Nichols, C. B., Fernandes, L., Bocca, A. L., Poças-Fonseca, M. J., & Alspaugh, J. A. (2018). HDAC genes play distinct and redundant roles in Cryptococcus neoformans virulence. Scientific Reports, 8(1), 1–17. https://doi.org/10.1038/s41598-018-21965-y

Bultman, S. J. (2017). Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Molecular Nutrition and Food Research, 61(1), 1–12. https://doi.org/10.1002/mnfr.201500902

Caly, L., Druce, J. D., Catton, M. G., Jans, D. A., & Wagstaff, K. M. (2020). The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, 178(March), 3–6. https://doi.org/10.1016/j.antiviral.2020.104787

Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., … Wang, C. (2020). A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. New England Journal of Medicine, 382(19), 1787–1799. https://doi.org/10.1056/nejmoa2001282

Cao, T., Zhang, X., Chen, D., Zhang, P., Li, Q., & Muhammad, A. (2018). The epigenetic modification during the induction of Foxp3 with sodium butyrate. Immunopharmacology and Immunotoxicology, 40(4), 309–318. https://doi.org/10.1080/08923973.2018.1480631

Carfi, A., Bernabei, R., & Landi, F. (2020). Persistent Symptoms in Patients After Acute COVID-19. New England Journal of Medicine, 324(6), 603–605. https://doi.org/10.1001/jama.2020.12603

Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C., & Napoli, R. Di. (2020). Features, Evaluation and Treatment Coronavirus ( COVID-19 ). In StatPearls [Internet]. StatPearls Publishing.

Cavalcanti, A. B., Zampieri, F. G., Rosa, R. G., Azevedo, L. C. P., Veiga, V. C., Avezum, A., Damiani, L. P., Marcadenti, A., Kawano-Dourado, L., Lisboa, T., Junqueira, D. L. M., de Barros e Silva, P. G. M., Tramujas, L., Abreu-Silva, E. O., Laranjeira, L. N., Soares, A. T., Echenique, L. S., Pereira, A. J., Freitas, F. G. R., … Berwanger, O. (2020). Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. New England Journal of Medicine, 383(21), 2041–2052. https://doi.org/10.1056/nejmoa2019014

Chaccour, C., Casellas, A., Blanco-Di Matteo, A., Pineda, I., Fernandez-Montero, A., Ruiz-Castillo, P., Richardson, M.-A., Rodríguez-Mateos, M., Jordán-Iborra, C., Brew, J., Carmona-Torre, F., Giráldez, M., Laso, E., Gabaldón-Figueira, J. C., Dobaño, C., Moncunill, G., Yuste, J. R., Del Pozo, J. L., Rabinovich, N. R., … Fernández-Alonso, M. (2021). The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: A pilot, double-blind, placebo-controlled, randomized clinical trial. EClinicalMedicine, 32, 100720. https://doi.org/10.1016/j.eclinm.2020.100720

Chen, X., Liao, B., Cheng, L., Peng, X., Xu, X., Li, Y., Hu, T., Li, J., Zhou, X., & Ren, B. (2020). The microbial coinfection in COVID-19. Applied Microbiology and Biotechnology, 104(18), 7777–7785. https://doi.org/10.1007/s00253-020-10814-6

Chlamydas, S., Papavassiliou, A. G., & Piperi, C. (2020). Epigenetic mechanisms regulating COVID-19 infection. Epigenetics, 16(3), 263–270. https://doi.org/10.1080/15592294.2020.1796896

Chunxi, L., Haiyue, L., Yanxia, L., Jianbing, P., & Jin, S. (2020). The Gut Microbiota and Respiratory Diseases: New Evidence. Journal of Immunology Research. https://doi.org/10.1155/2020/2340670

Clancy, C. J., & Nguyen, M. H. (2020). COVID-19, superinfections and antimicrobial development: What can we expect? Clinical Infectious Diseases, 71(10), 2736–2743. https://doi.org/10.1093/cid/ciaa524

Coleman, O. I., & Nunes, T. (2016). Role of the Microbiota in Colorectal Cancer: Updates on Microbial Associations and Therapeutic Implications. BioResearch Open Access, 5(1), 279–288. https://doi.org/10.1089/biores.2016.0028

Costa, A. N., Costa, F. M. da, Campos, S. V., Salles, R. K., & Athanazio, R. A. (2018a). The pulmonary microbiome: Challenges of a new paradigm. Jornal Brasileiro de Pneumologia, 44(5), 424–432. https://doi.org/10.1590/s1806-37562017000000209

Costa, A. N., Costa, F. M. da, Campos, S. V., Salles, R. K., & Athanazio, R. A. (2018b). The pulmonary microbiome: Challenges of a new paradigm. Jornal Brasileiro de Pneumologia, 44(5), 424–432. https://doi.org/10.1590/s1806-37562017000000209

Costa, M. G. M., & Rocha, J. S. (2021). Modulação Da Microbiota Intestinal Como Estratégia De Resposta Imunológica À Covid-19. Revista Multidisciplinar Em Saúde, 2(2). https://doi.org/10.51161/rems/1192

De Sousa-Majer, M. J., Hardie, D. C., Turner, N. C., & Higgins, T. J. V. (2007). Bean alpha-amylase inhibitors in transgenic peas inhibit development of pea weevil larvae. Journal of Economic Entomology, 100(4), 1416–1422. https://doi.org/10.1603/0022-0493(2007)100[1416:BAIITP]2.0.CO;2

Demehri, F. R., Barrett, M., Ralls, M. W., Miyasaka, E. A., Feng, Y., & Teitelbaum, D. H. (2013). Intestinal epithelial cell apoptosis and loss of barrier function in the setting of altered microbiota with enteral nutrient deprivation. Frontiers in Cellular and Infection Microbiology, 3(DEC), 1–7. https://doi.org/10.3389/fcimb.2013.00105

Deriu, E., Boxx, G. M., He, X., Pan, C., Benavidez, S. D., Cen, L., Rozengurt, N., Shi, W., & Cheng, G. (2016). Influenza Virus Affects Intestinal Microbiota and Secondary Salmonella Infection in the Gut through Type I Interferons. PLoS Pathogens, 12(5), 1–26. https://doi.org/10.1371/journal.ppat.1005572

Dickson, R. P., Erb-Downward, J. R., & Huffnagle, G. B. (2015). Homeostasis and its disruption in the lung microbiome. American Journal of Physiology - Lung Cellular and Molecular Physiology, 309(10), L1047–L1055. https://doi.org/10.1152/ajplung.00279.2015

Dogra, S. K., Doré, J., & Damak, S. (2020). Gut Microbiota Resilience: Definition, Link to Health and Strategies for Intervention. Frontiers in Microbiology, 11(September), 2014–2021. https://doi.org/10.3389/fmicb.2020.572921

Dumas, A., Bernard, L., Poquet, Y., Lugo-Villarino, G., & Neyrolles, O. (2018). The role of the lung microbiota and the gut–lung axis in respiratory infectious diseases. Cellular Microbiology, 20(12), 1–9. https://doi.org/10.1111/cmi.12966

Elsayed, S., & Zhang, K. (2004). Human infection caused by Clostridium hatheawayi. Emerging Infectious Diseases, 10(11), 1950–1952. https://doi.org/10.3201/eid1011.040006

Enaud, R., Prevel, R., Ciarlo, E., Beaufils, F., Wieërs, G., Guery, B., & Delhaes, L. (2020). The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Frontiers in Cellular and Infection Microbiology, 10(February), 1–11. https://doi.org/10.3389/fcimb.2020.00009

Fadel, R., Morrison, A. R., Vahia, A., Smith, Z. R., Chaudhry, Z., Bhargava, P., Miller, J., Kenney, R. M., Alandagen, G., & Ramesh, M. S. (2020). Early Short Course Corticosteroids in Hospitalized Patients with COVID-19. Clinical Infectious Diseases, 71(16), 2114–2120. https://doi.org/10.1093/cid/ciaa601

Federal Drug Administration. (2021). Emergency Use Authorization (EUA) of Casirivimab and Imdevimab (p. 27). https://www.fda.gov/media/143892/download

Ferreira, M. V. C., Paes, V. R., & Lichtenstein, A. (2008). Penicilina : oitenta anos. Rev. Med., 87(4), 272–276. https://doi.org/10.11606/issn.1679-9836.v87i4p272-276

Folegatti, P. M., Ewer, K. J., Aley, P. K., Angus, B., Becker, S., Belij-Rammerstorfer, S., Bellamy, D., Bibi, S., Bittaye, M., Clutterbuck, E. A., Dold, C., Faust, S. N., Finn, A., Flaxman, A. L., Hallis, B., Heath, P., Jenkin, D., Lazarus, R., Makinson, R., … Yau, Y. (2020). Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. The Lancet, 396(10249), 467–478. https://doi.org/10.1016/S0140-6736(20)31604-4

Freitas, N. L. de, Azevedo, P. R. G., & Brandão, F. (2020). A glance upon epigenetic and COVID-19. Anais Da Academia Brasileira de Ciencias, 92(4), 1–3. https://doi.org/10.1590/0001-3765202020201451

Gagnière, J., Raisch, J., Veziant, J., Barnich, N., Bonnet, R., Buc, E., Bringer, M. A., Pezet, D., & Bonnet, M. (2016). Gut microbiota imbalance and colorectal cancer. World Journal of Gastroenterology, 22(2), 501–518. https://doi.org/10.3748/wjg.v22.i2.501

Garcia-Vidal, C., Sanjuan, G., Moreno-García, E., Puerta-Alcalde, P., Garcia-Pouton, N., Chumbita, M., Fernandez-Pittol, M., Pitart, C., Inciarte, A., Bodro, M., Morata, L., Ambrosioni, J., Grafia, I., Meira, F., Macaya, I., Cardozo, C., Casals, C., Tellez, A., Castro, P., … Torres, A. (2021). Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. Clinical Microbiology and Infection, 27(1), 83–88. https://doi.org/10.1016/j.cmi.2020.07.041

Gautret, P., Lagier, J., Parola, P., & Hoang, V. T. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 56(1). https://doi.org/10.1016/j.ijantimicag.2020.105949

Geremia, D. A. A., Peixe, J. B., Barreto, B. S. P., Frohlich, F., Tossatti, I. P. B., De Sene, M. R. I., Meier, L. F. S., & Feitosa, I. B. (2021). O papel do intestino na homeostase imunológica. Brazilian Journal of Development, 7(6), 55181–55191. https://doi.org/10.34117/bjdv7n6-091

Geva-Zatorsky, N., Sefik, E., Kua, L., Pasman, L., Tan, T. G., Ortiz-Lopez, A., Yanortsang, T. B., Yang, L., Jupp, R., Mathis, D., Benoist, C., & Kasper, D. L. (2017). Mining the Human Gut Microbiota for Immunomodulatory Organisms. Cell, 168(5), 928-943.e11. https://doi.org/10.1016/j.cell.2017.01.022

Gohil, K., Samson, R., Dastager, S., & Dharne, M. (2021). Probiotics in the prophylaxis of COVID-19: something is better than nothing. 3 Biotech, 11(1), 1–10. https://doi.org/10.1007/s13205-020-02554-1

Gomes, A. P. P. (2017). A microbiota intestinal e os desenvolvimentos recentes sobre o seu impacto na saúde e na doença [Universidade de Lisboa]. https://repositorio.ul.pt/bitstream/10451/36100/1/MICF_Ana_Patricia_Gomes.pdf

Gregoretti, I. V., Lee, Y. M., & Goodson, H. V. (2004). Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. Journal of Molecular Biology, 338(1), 17–31. https://doi.org/10.1016/j.jmb.2004.02.006

Gu, S., Chen, Y., Wu, Z., Chen, Y., Gao, H., Lv, L., Guo, F., Zhang, X., Luo, R., Huang, C., Lu, H., Zheng, B., Zhang, J., Yan, R., Zhang, H., Jiang, H., Xu, Q., Guo, J., Gong, Y., … Li, L. (2020). Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clinical Infectious Diseases, 71(10), 2669–2678. https://doi.org/10.1093/cid/ciaa709

Guimarães, K. S. de L., Braga, V. de A., Noronha, S. I. S. R. de, Costa, W. K. A. da, Makki, K., Cruz, J. de C., Brandão, L. R., Junior, D. A. C., Meugnier, E., Leulier, F., Vidal, H., Magnani, M., & Alves, J. L. de B. (2020). Lactiplantibacillus plantarum WJL administration during pregnancy and lactation improves lipid profile, insulin sensitivity and gut microbiota diversity in dyslipidemic dams and protects male offspring against cardiovascular dysfunction in later life. Food & Function, 11(10), 8939–8950. https://doi.org/10.1039/d0fo01718c

Han, S. K., & Kim, D. H. (2019). Lactobacillus mucosae and Bifidobacterium longum Synergistically Alleviate Immobilization Stress-Induced Anxiety/Depression in Mice by Suppressing Gut Dysbiosis. Journal of Microbiology and Biotechnology, 29(9), 1369–1374. https://doi.org/10.4014/jmb.1907.07044

Hanada, S., Pirzadeh, M., Carver, K. Y., & Deng, J. C. (2018). Respiratory viral infection-induced microbiome alterations and secondary bacterial pneumonia. Frontiers in Immunology, 9(NOV), 1–15. https://doi.org/10.3389/fimmu.2018.02640

Hasan, S. S., Capstick, T., Ahmed, R., Kow, C. S., Mazhar, F., Merchant, H. A., & Zaidi, S. T. R. (2020). Mortality in COVID-19 patients with acute respiratory distress syndrome and corticosteroids use: a systematic review and meta-analysis. Expert Review of Respiratory Medicine, 1–15. https://doi.org/10.1080/17476348.2020.1804365

Hauptmann, M., & Schaible, U. E. (2016). Linking microbiota and respiratory disease. FEBS Letters, 590(21), 3721–3738. https://doi.org/10.1002/1873-3468.12421

He, H., Xu, H., Xu, J., Zhao, H., Lin, Q., Zhou, Y., & Nie, Y. (2020). Sodium Butyrate Ameliorates Gut Microbiota Dysbiosis in Lupus-Like Mice. Frontiers in Nutrition, 7(November), 1–10. https://doi.org/10.3389/fnut.2020.604283

Hoffmann, M., Kleine-weber, H., Schroeder, S., Krüger, N., Herrier, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181, 271–280. https://doi.org/10.1016/j.cell.2020.02.052

Hsu, J. (2020). How covid-19 is accelerating the threat of antimicrobial resistance. The BMJ, 369(May), 18–19. https://doi.org/10.1136/bmj.m1983

Huang, E. Y., Inoue, T., Leone, V. A., Dalal, S., Touw, K., Wang, Y., Musch, M. W., Theriault, B., Higuchi, K., Donovan, S., Gilbert, J., & Chang, E. B. (2015). Using corticosteroids to reshape the gut microbiome: Implications for inflammatory bowel diseases. Inflammatory Bowel Diseases, 21(5), 963–972. https://doi.org/10.1097/MIB.0000000000000332

Indrio, F., Martini, S., Francavilla, R., Corvaglia, L., Cristofori, F., Mastrolia, S. A., Neu, J., Rautava, S., Spena, G. R., Raimondi, F., & Loverro, G. (2017). Epigenetic matters: The link between early nutrition, microbiome, and long-term health development. Frontiers in Pediatrics, 5(August), 1–14. https://doi.org/10.3389/fped.2017.00178

Jang, H. M., Lee, K. E., Lee, H. J., & Kim, D. H. (2018). Immobilization stress-induced Escherichia coli causes anxiety by inducing NF-κB activation through gut microbiota disturbance. Scientific Reports, 8(1), 1–14. https://doi.org/10.1038/s41598-018-31764-0

Javdan, B., Lopez, J. G., Chankhamjon, P., Lee, Y. C. J., Hull, R., Wu, Q., Wang, X., Chatterjee, S., & Donia, M. S. (2020). Personalized Mapping of Drug Metabolism by the Human Gut Microbiome. Cell, 181(7), 1661-1679.e22. https://doi.org/10.1016/j.cell.2020.05.001

Katada, S., Imhof, A., & Sassone-Corsi, P. (2012). Connecting threads: Epigenetics and metabolism. Cell, 148(1–2), 24–28. https://doi.org/10.1016/j.cell.2012.01.001

Kennedy, M. T. (2004). A Brief History of Disease, Science and Medicine: from the Ice Age to the Genome Project. Asklepiad Press.

Keyaerts, E., Li, S., Vijgen, L., Rysman, E., Verbeeck, J., Van Ranst, M., & Maes, P. (2009). Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrobial Agents and Chemotherapy, 53(8), 3416–3421. https://doi.org/10.1128/AAC.01509-08

Khan, M., Mathew, B. J., Gupta, P., Garg, G., Khadanga, S., Vyas, A. K., & Singh, A. K. (2021). Gut dysbiosis and il-21 response in patients with severe covid-19. Microorganisms, 9(6), 1–16. https://doi.org/10.3390/microorganisms9061292

Kitsios, G. D., Morowitz, M. J., Dickson, R. P., Huffnagle, G. B., Mcverry, B. J., Morris, A., & Chair, V. (2017). Dysbiosis in the ICU: Microbiome science coming to the bedside. Journal of Critical Care, 38, 84–91. https://doi.org/10.1016/j.jcrc.2016.09.029

Krautkramer, K. A., Rey, F. E., & Denu, J. M. (2017). Chemical signaling between gut microbiota and host chromatin: What is your gut really saying? Journal of Biological Chemistry, 292(21), 8582–8593. https://doi.org/10.1074/jbc.R116.761577

Kumarasamy, K. K., Toleman, M. A., Walsh, T. R., Bagaria, J., Butt, F., Balakrishnan, R., Chaudhary, U., Doumith, M., Giske, C. G., Irfan, S., Krishnan, P., Kumar, A. V., Maharjan, S., Mushtaq, S., Noorie, T., Paterson, D. L., Pearson, A., Perry, C., Pike, R., … Woodford, N. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. The Lancet Infectious Diseases, 10(9), 597–602. https://doi.org/10.1016/S1473-3099(10)70143-2

Lamontagne, F., Agoritsas, T., Macdonald, H., Leo, Y., Diaz, J., Agarwal, A., Appiah, J. A., Arabi, Y., Blumberg, L., & Calfee, C. S. (2020). A living WHO guideline on drugs for covid-19. The BMJ. https://doi.org/10.1136/bmj.m3379

Landeiro, J. A. V. R. (2016). Impacto da Microbiota Intestinal na Saúde Mental [Instituto Superior de Ciências da Saúde Egas Moniz]. https://comum.rcaap.pt/bitstream/10400.26/17565/1/Landeiro_Joana_Almeida_Vilão_Raposo.pdf

Lansbury, L., Lim, B., Baskaran, V., & Lim, W. S. (2020). Co-Infections in People with COVID-19: A Systematic Review and Meta-Analysis. Journal of Infection, 81, 266–275. https://doi.org/10.2139/ssrn.3594598

Levy, M., Kolodziejczyk, A. A., Thaiss, C. A., & Elinav, E. (2017). Dysbiosis and the immune system. Nature Reviews Immunology, 17(4), 219–232. https://doi.org/10.1038/nri.2017.7

Li, J., Richards, E. M., Handberg, E. M., Pepine, C. J., & Raizada, M. K. (2021). Butyrate Regulates COVID-19-Relevant Genes in Gut Epithelial Organoids From Normotensive Rats. Hipertension, 77, e13–e17. https://doi.org/10.1161/HYPERTENSIONAHA.120.16647

Licciardi, P. V., Wong, S. S., Tang, M. L. K., & Karagiannis, T. C. (2010). Epigenome targeting by probiotic metabolites. Gut Pathogens, 2(1), 1–5. https://doi.org/10.1186/1757-4749-2-24

Liu, X., Chen, H., Shang, Y., Zhu, H., Chen, G., Chen, Y., Liu, S., Zhou, Y., Huang, M., Hong, Z., & Xia, J. (2020). Efficacy of chloroquine versus lopinavir/ritonavir in mild/general COVID-19 infection: a prospective, open-label, multicenter, randomized controlled clinical study. Trials, 21(1), 1–9. https://doi.org/10.1186/s13063-020-04478-w

Lloyd-Sherlock, P., McKee, M., Ebrahim, S., Gorman, M., Greengross, S., Prince, M., Pruchno, R., Gutman, G., Kirkwood, T., O’Neill, D., Ferrucci, L., Kritchevsky, S. B., & Vellas, B. (2012). Population ageing and health. The Lancet, 379(9823), 1295–1296. https://doi.org/10.1016/S0140-6736(12)60519-4

Logunov, D. Y., Dolzhikova, I. V, Shcheblyakov, D. V, Tukhvatulin, A. I., Zubkova, O. V, Dzharullaeva, A. S., Kovyrshina, A. V, Lubenets, N. L., Grousova, D. M., Erokhova, A. S., Botikov, A. G., Izhaeva, F. M., Popova, O., Ozharovskaya, T. A., Esmagambetov, I. B., Favorskaya, I. A., Zrelkin, D. I., Voronina, D. V, Shcherbinin, D. N., … Gintsburg, A. L. (2021). Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. The Lancet, 397(10275), 671–681. https://doi.org/10.1016/s0140-6736(21)00234-8

López-Medina, E., López, P., Hurtado, I. C., Dávalos, D. M., Ramirez, O., Martínez, E., Díazgranados, J. A., Oñate, J. M., Chavarriaga, H., Herrera, S., Parra, B., Libreros, G., Jaramillo, R., Avendaño, A. C., Toro, D. F., Torres, M., Lesmes, M. C., Rios, C. A., & Caicedo, I. (2021). Effect of Ivermectin on Time to Resolution of Symptoms Among Adults With Mild COVID-19: A Randomized Clinical Trial. Jama, 1–10. https://doi.org/10.1001/jama.2021.3071

Lopez-Santamarina, A., Lamas, A., del Carmen Mondragón, A., Cardelle-Cobas, A., Regal, P., Rodriguez-Avila, J. A., Miranda, J. M., Franco, C. M., & Cepeda, A. (2021). Probiotic Effects against Virus Infections: New Weapons for an Old War. Foods, 10(1). https://doi.org/10.3390/foods10010130

Loureiro, R. J., Roque, F., Teixeira Rodrigues, A., Herdeiro, M. T., & Ramalheira, E. (2016). O uso de antibióticos e as resistências bacterianas: breves notas sobre a sua evolução. Revista Portuguesa de Saude Publica, 34(1), 77–84. https://doi.org/10.1016/j.rpsp.2015.11.003

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8

Magalhães, N. S., Savino, W., Silva, P. M. R., Martins, M. A., & Carvalho, V. F. (2021). Gut Microbiota Dysbiosis Is a Crucial Player for the Poor Outcomes for COVID-19 in Elderly, Diabetic and Hypertensive Patients. Frontiers in Medicine, 8(May), 1–11. https://doi.org/10.3389/fmed.2021.644751

Mahmoudi, H. (2020). Bacterial co-infections and antibiotic resistance in patients with COVID-19. GMS Hygiene and Infection Control, 15, Doc35. https://doi.org/10.3205/dgkh000370

Mahowald, M. A., Rey, F. E., Seedorf, H., Turnbaugh, P. J., Fulton, R. S., Wollam, A., Shah, N., Wang, C., Magrini, V., Wilson, R. K., Cantarel, B. L., Coutinho, P. M., Henrissat, B., Crock, L. W., Russell, A., Verberkmoes, N. C., Hettich, R. L., & Gordon, J. I. (2009). Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5859–5864. https://doi.org/10.1073/pnas.0901529106

Malcolm, W., Seaton, R. A., Haddock, G., Baxter, L., Thirlwell, S., Russell, P., Cooper, L., Thomson, A., & Sneddon, J. (2020). Impact of the COVID-19 pandemic on community antibiotic prescribing in Scotland. JAC-Antimicrobial Resistance, 2(4), 1–4. https://doi.org/10.1093/jacamr/dlaa105

Marsland, B. J., & Gollwitzer, E. S. (2014). Host-microorganism interactions in lung diseases. Nature Reviews Immunology, 14(12), 827–835. https://doi.org/10.1038/nri3769

Martin, M. O. (2013). Overuse of Antibiotics: A Voice (with Multiple Agendas) Crying Out in the Microbial Wilderness. Journal of Microbiology & Biology Education, 15(2), 337–338. https://doi.org/10.1128/jmbe.v15i2.793

Mathew, O. P., Ranganna, K., & Milton, S. G. (2014). Involvement of the antioxidant effect and anti-inflammatory response in butyrate-inhibited vascular smooth muscle cell proliferation. Pharmaceuticals, 7(11), 1008–1027. https://doi.org/10.3390/ph7111008

McKenney, P. T., & Pamer, E. G. (2015). From Hype to Hope: The Gut Microbiota in Enteric Infectious Disease. Cell, 163(6), 1326–1332. https://doi.org/10.1016/j.cell.2015.11.032

Miro-Blanch, J., & Yanes, O. (2019). Epigenetic regulation at the interplay between gut microbiota and host metabolism. Frontiers in Genetics, 10(JUL), 1–9. https://doi.org/10.3389/fgene.2019.00638

Mirzaei, R., Attar, A., Papizadeh, S., Jeda, A. S., Hosseini-Fard, S. R., Jamasbi, E., Kazemi, S., Amerkani, S., Talei, G. R., Moradi, P., Jalalifar, S., Yousefimashouf, R., Hossain, M. A., Keyvani, H., & Karampoor, S. (2021). The emerging role of probiotics as a mitigation strategy against coronavirus disease 2019 (COVID-19). Archives of Virology, Mar 20, 1–22. https://doi.org/10.1007/s00705-021-05036-8

Moraes, A. C. F. de, Silva, I. T. da, Almeida-Pititto, B. de, & Ferreira, S. R. G. (2014). Microbiota intestinal e risco cardiometabólico: Mecanismos e modulação dietética. Arquivos Brasileiros de Endocrinologia e Metabologia, 58(4), 317–327. https://doi.org/10.1590/0004-2730000002940

Morowitz, M. J., Carlisle, E., & Alverdy, J. C. (2012). Contributions of Intestinal Bacteria to Nutrition and Metabolism in the Critically Ill. Surgical Clinics of North Amer, 91(4), 771–785. https://doi.org/10.1016/j.suc.2011.05.001

Newell, P. D., & Douglas, A. E. (2014). Interspecies Interactions Determine the Impact of the Gut Microbiota on Nutrient Allocation in Drosophila melanogaster. Applied and Environmental Microbiology, 80(2), 788–796. https://doi.org/10.1128/AEM.02742-13

Nibali, L., & Brian, H. (2016). The Human Microbiota and Chronic Disease: Dysbiosis as a Cause of Human Pathology (L. Nibali & H. Brian (eds.)). Wiley Blackwell. https://doi.org/10.1002/9781118982907.ch3

Nori, P., Cowman, K., Chen, V., Bartash, R., Szymczak, W., Madaline, T., Punjabi Katiyar, C., Jain, R., Aldrich, M., Weston, G., Gialanella, P., Corpuz, M., Gendlina, I., & Guo, Y. (2021). Bacterial and fungal coinfections in COVID-19 patients hospitalized during the New York City pandemic surge. Infection Control and Hospital Epidemiology, 42(1), 84–88. https://doi.org/10.1017/ice.2020.368

Opoku-Acheampong, I., McLaud, T., & Anderson, O. S. (2021). Fecal Microbiota Transplantation to Prevent and Treat Chronic Disease: Implications for Dietetics Practice. Journal of the Academy of Nutrition and Dietetics. https://doi.org/10.1016/j.jand.2021.08.112

Patra, S., Saxena, S., Sahu, N., Pradhan, B., & Roychowdhury, A. (2021). Systematic Network and Meta-analysis on the Antiviral Mechanisms of Probiotics: A Preventive and Treatment Strategy to Mitigate SARS-CoV-2 Infection. Probiotics and Antimicrobial Proteins. https://doi.org/10.1007/s12602-021-09748-w

Peleg, S., Feller, C., Ladurner, A. G., & Imhof, A. (2016). The Metabolic Impact on Histone Acetylation and Transcription in Ageing. Trends in Biochemical Sciences, 41(8), 700–711. https://doi.org/10.1016/j.tibs.2016.05.008

Pickard, J. M., Zeng, M. Y., Caruso, R., & Núñez, G. (2017). Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunological Reviews, 279(1), 70–89. https://doi.org/10.1111/imr.12567

Pinto, C. T. (2016). Homeostase da microbiota intestinal : saúde ou doença no homem [Universidade de Coimbra]. https://estudogeral.sib.uc.pt/handle/10316/40869

Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Hammitt, L. L., … Gruber, W. C. (2020). Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England Journal of Medicine, 383(27), 2603–2615. https://doi.org/10.1056/nejmoa2034577

Pruimboom, L. (2020). Methylation Pathways and SARS-CoV-2 Lung Infiltration and Cell Membrane-Virus Fusion Are Both Subject to Epigenetics. Frontiers in Cellular and Infection Microbiology, 10(May), 1–5. https://doi.org/10.3389/fcimb.2020.00290

Ranganna, K., Yousefipour, Z., Yatsu, F. M., Milton, S. G., & Hayes, B. E. (2003). Gene expression profile of butyrate-inhibited vascular smooth muscle cell proliferation. Molecular and Cellular Biochemistry, 254(1–2), 21–36. https://doi.org/10.1023/A:1027383710582

Rawson, T. M., Ming, D., Ahmad, R., Moore, L. S. P., & Holmes, A. H. (2020). Antimicrobial use, drug-resistant infections and COVID-19. Nature Reviews. Microbiology, 18(8), 409–410. https://doi.org/10.1038/s41579-020-0395-y

Rawson, T. M., Moore, L. S. P., Zhu, N., Ranganathan, N., Skolimowska, K., Gilchrist, M., Satta, G., Cooke, G., & Holmes, A. (2020). Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 71(9), 2459–2468. https://doi.org/10.1093/cid/ciaa530

Remely, M., Aumueller, E., Jahn, D., Hippe, B., Brath, H., & Haslberger, A. G. (2014). Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity. Beneficial Microbes, 5(1), 33–43. https://doi.org/10.3920/BM2013.006

Reuben, R. C., Makut, M. D., & Adogo, L. Y. (2021). Probiotics potentials in mitigating coronavirus disease (COVID-19) pandemic. Pan African Medical Journal, 38(186). https://doi.org/10.11604/pamj.2021.38.186.27953

Ringel, A. E., Tucker, S. A., & Haigis, M. C. (2018). Chemical and Physiological Features of Mitochondrial Acylation. Molecular Cell, 72(4), 610–624. https://doi.org/10.1016/j.molcel.2018.10.023

Rogers, G. B., Shaw, D., Marsh, R. L., Carroll, M. P., Serisier, D. J., & Bruce, K. D. (2015). Respiratory microbiota: Addressing clinical questions, informing clinical practice. Thorax, 70(1), 74–81. https://doi.org/10.1136/thoraxjnl-2014-205826

Romano, K. A., Martinez-del Campo, A., Kasahara, K., Chittim, C. L., Vivas, E. I., Amador-Noguez, D., Balskus, E. P., & Rey, F. E. (2017). Metabolic, Epigenetic, and Transgenerational Effects of Gut Bacterial Choline Consumption. Cell Host and Microbe, 22(3), 279-290.e7. https://doi.org/10.1016/j.chom.2017.07.021

Sadeghi, A., Asgari, A. A., Norouzi, A., Kheiri, Z., Anushirvani, A., Montazeri, M., Hosamirudsai, H., Afhami, S., Akbarpour, E., Aliannejad, R., Radmard, A. R., Davarpanah, A. H., Levi, J., Wentzel, H., Qavi, A., Garratt, A., Simmons, B., Hill, A., & Merat, S. (2020). Sofosbuvir and daclatasvir compared with standard of care in the treatment of patients admitted to hospital with moderate or severe coronavirus infection (COVID-19): A randomized controlled trial. Journal of Antimicrobial Chemotherapy, 75(11), 3379–3385. https://doi.org/10.1093/jac/dkaa334

Sadoff, J., Le Gars, M., Shukarev, G., Heerwegh, D., Truyers, C., de Groot, A. M., Stoop, J., Tete, S., Van Damme, W., Leroux-Roels, I., Berghmans, P.-J., Kimmel, M., Van Damme, P., de Hoon, J., Smith, W., Stephenson, K. E., De Rosa, S. C., Cohen, K. W., McElrath, M. J., … Schuitemaker, H. (2021). Interim Results of a Phase 1–2a Trial of Ad26.COV2.S Covid-19 Vaccine. New England Journal of Medicine, 1–12. https://doi.org/10.1056/nejmoa2034201

Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., Challis, C., Schretter, C. E., Rocha, S., Gradinaru, V., Chesselet, M. F., Keshavarzian, A., Shannon, K. M., Krajmalnik-Brown, R., Wittung-Stafshede, P., Knight, R., & Mazmanian, S. K. (2016). Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell, 167(6), 1469-1480.e12. https://doi.org/10.1016/j.cell.2016.11.018

Sawalha, A. H., Zhao, M., Coit, P., & Lu, Q. (2020). Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. Clinical Immunology, 215, 1–4. https://doi.org/10.1016/j.clim.2020.108410

Schimidt, D. B. (2017). Pressão seletiva antimicrobiana e a expressão da resistência à oxacilina em Staphylococcus aureus [Universidade Federal Fluminense]. https://app.uff.br/riuff/handle/1/6139#:~:text=nativas de S.-,aureus foram associadas às mudanças relacionadas às demais amostras.,sobre indivíduos colonizados por S.

Selarka, L., Sharma, S., Saini, D., Sharma, S., Batra, A., Waghmare, V. T., Dileep, P., Patel, S., Shah, M., Parikh, T., Darji, P., Patel, A., Goswami, G., Shah, A., Shah, S., Lathiya, H., Shah, M., Sharma, P., Chopra, S., … Ong, J. J. Y. (2021). Mucormycosis and COVID-19: An epidemic within a pandemic in India. Mycoses, 64(10), 1253–1260. https://doi.org/10.1111/myc.13353

Self, W. H., Semler, M. W., Leither, L. M., Casey, J. D., Angus, D. C., Brower, R. G., Chang, S. Y., Collins, S. P., Eppensteiner, J. C., Filbin, M. R., Files, D. C., Gibbs, K. W., Ginde, A. A., Gong, M. N., Harrell, F. E., Hayden, D. L., Hough, C. L., Johnson, N. J., Khan, A., … Brown, S. M. (2020). Effect of Hydroxychloroquine on Clinical Status at 14 Days in Hospitalized Patients with COVID-19: A Randomized Clinical Trial. JAMA - Journal of the American Medical Association, 324(21), 2165–2176. https://doi.org/10.1001/jama.2020.22240

Sencio, V., Barthelemy, A., Tavares, L. P., Machado, M. G., Soulard, D., Cuinat, C., Queiroz-Junior, C. M., Noordine, M. L., Salomé-Desnoulez, S., Deryuter, L., Foligné, B., Wahl, C., Frisch, B., Vieira, A. T., Paget, C., Milligan, G., Ulven, T., Wolowczuk, I., Faveeuw, C., … Trottein, F. (2020). Gut Dysbiosis during Influenza Contributes to Pulmonary Pneumococcal Superinfection through Altered Short-Chain Fatty Acid Production. Cell Reports, 30(9), 2934-2947.e6. https://doi.org/10.1016/j.celrep.2020.02.013

Senghor, B., Sokhna, C., Ruimy, R., & Lagier, J. C. (2018). Gut microbiota diversity according to dietary habits and geographical provenance. Human Microbiome Journal, 7–8(December 2017), 1–9. https://doi.org/10.1016/j.humic.2018.01.001

Shahbazi, R., Yasavoli-Sharahi, H., Alsadi, N., Ismail, N., & Matar, C. (2020). Probiotics in Treatment of Viral Respiratory Infections and Neuroinflammatory Disorders. Molecules (Basel, Switzerland), 25(21), 1–20. https://doi.org/10.3390/molecules25214891

Shen, X. J., Rawls, J. F., Randall, T., Burcal, L., Mpande, C. N., Jenkins, N., Jovov, B., Abdo, Z., Sandler, R. S., & Keku, T. O. (2010). Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes, 1(3), 138–147. https://doi.org/10.4161/gmic.1.3.12360

Silva, M. O. da, & Aquino, S. (2018). Resistência aos antimicrobianos: uma revisão dos desafios na busca por novas alternativas de tratamento. Revista de Epidemiologia e Controle de Infecção, 8(4), 472–482. https://doi.org/10.17058/reci.v8i4.11580

Silva, L. G., Ferguson, B. S., Avila, A. S., & Faciola, A. P. (2018). Sodium propionate and sodium butyrate effects on histone deacetylase (HDAC) activity, histone acetylation, and inflammatory gene expression in bovine mammary epithelial cells. Journal of Animal Science, 96(12), 5244–5252. https://doi.org/10.1093/jas/sky373

Singh, K., & Rao, A. (2021). Probiotics: A potential immunomodulator in COVID-19 infection management. Nutrition Research, 87, 1–12. https://doi.org/10.1016/j.nutres.2020.12.014

Skonieczna-żydecka, K., Grochans, E., Maciejewska, D., Szkup, M., Schneider-Matyka, D., Jurczak, A., Łoniewski, I., Kaczmarczyk, M., Marlicz, W., Czerwińska-Rogowska, M., Pełka-Wysiecka, J., Dec, K., & Stachowska, E. (2018). Faecal short chain fatty acids profile is changed in Polish depressive women. Nutrients, 10(12), 1–14. https://doi.org/10.3390/nu10121939

Spinner, C. D., Gottlieb, R. L., Criner, G. J., Arribas López, J. R., Cattelan, A. M., Soriano Viladomiu, A., Ogbuagu, O., Malhotra, P., Mullane, K. M., Castagna, A., Chai, L. Y. A., Roestenberg, M., Tsang, O. T. Y., Bernasconi, E., Le Turnier, P., Chang, S. C., Sengupta, D., Hyland, R. H., Osinusi, A. O., … Marty, F. M. (2020). Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients with Moderate COVID-19: A Randomized Clinical Trial. JAMA - Journal of the American Medical Association, 324(11), 1048–1057. https://doi.org/10.1001/jama.2020.16349

Stokholm, J., Blaser, M. J., Thorsen, J., Rasmussen, M. A., Waage, J., Vinding, R. K., Schoos, A. M. M., Kunøe, A., Fink, N. R., Chawes, B. L., Bønnelykke, K., Brejnrod, A. D., Mortensen, M. S., Al-Soud, W. A., Sørensen, S. J., & Bisgaard, H. (2018). Maturation of the gut microbiome and risk of asthma in childhood. Nature Communications, 9(1), 1–10. https://doi.org/10.1038/s41467-017-02573-2

Tang, L., Gu, S., Gong, Y., Li, B., Lu, H., Li, Q., Zhang, R., Gao, X., Wu, Z., Zhang, J., Zhang, Y., & Li, L. (2020). Clinical significance of the the correlation between changes in the major intestinal bacteria species and COVID-19 severity. Engineering, 6, 1178–1184. https://doi.org/doi.org/10.1016/j.eng.2020.05.013

Terova, G., Díaz, N., Rimoldi, S., Ceccotti, C., Gliozheni, E., & Piferrer, F. (2016). Effects of sodium butyrate treatment on histone modifications and the expression of genes related to epigenetic regulatory mechanisms and immune response in European Sea Bass (Dicentrarchus Labrax) fed a plant-based diet. PLoS ONE, 11(7), 1–20. https://doi.org/10.1371/journal.pone.0160332

The RECOVERY Collaborative Group. (2020). Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report. New England Journal of Medicine, 384(8), 693–704. https://doi.org/10.1056/nejmoa2021436

Thibeault, C., Suttorp, N., & Opitz, B. (2021). The microbiota in pneumonia: From protection to predisposition. Science Translational Medicine, 13(576), 33441423. https://doi.org/10.1126/scitranslmed.aba0501

Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. Biochemical Journal, 474(11), 1823–1836. https://doi.org/10.1042/BCJ20160510

Tidjani Alou, M., Lagier, J. C., & Raoult, D. (2016). Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. Human Microbiome Journal, 1, 3–11. https://doi.org/10.1016/j.humic.2016.09.001

Tomazini, B. M., Maia, I. S., Cavalcanti, A. B., Berwanger, O., Rosa, R. G., Veiga, V. C., Avezum, A., Lopes, R. D., Bueno, F. R., Silva, M. V. A. O., Baldassare, F. P., Costa, E. L. V., Moura, R. A. B., Honorato, M. O., Costa, A. N., Damiani, L. P., Lisboa, T., Kawano-Dourado, L., Zampieri, F. G., … Azevedo, L. C. P. (2020). Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: The CoDEX randomized clinical trial. Journal of the American Medical Association, 324(13), 1307–1316. https://doi.org/10.1001/jama.2020.17021

Trindade, G. G., Caxito, S. M. C., Xavier, A. R. E. O., Xavier, M. A. S., & Brandão, F. (2020). COVID-19: Therapeutic approaches description and discussion. Anais Da Academia Brasileira de Ciencias, 92(2), 1–15. https://doi.org/10.1590/0001-3765202020200466

Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027–1031. https://doi.org/10.1038/nature05414

Udwadia, Z. F., Singh, P., Barkate, H., & Patil, S. (2020). Efficacy and safety of favipiravir , an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19 : A randomized, comparative, open-label, multicenter, phase 3 clinical trial. International Journa of Infectious Diseases, 103, 62–71. https://doi.org/10.1016/j.ijid.2020.11.142

Vallejos, J., Zoni, R., Bangher, M., Villamandos, S., Bobadilla, A., Plano, F., Campias, C., Chaparro Campias, E., Achinelli, F., Guglielmone, H. A., Ojeda, J., Medina, F., Farizano Salazar, D., Andino, G., Ruiz Diaz, N. E., Kawerin, P., Meza, E., Dellamea, S., Aquino, A., … Aguirre, M. G. (2020). Ivermectin to prevent hospitalizations in patients with COVID-19 (IVERCOR-COVID19): a structured summary of a study protocol for a randomized controlled trial. Trials, 21(1), 10–13. https://doi.org/10.1186/s13063-020-04813-1

Villar, J., Añón, J. M., Ferrando, C., Aguilar, G., Muñoz, T., Ferreres, J., Ambrós, A., Aldecoa, C., Suárez-Sipmann, F., Thorpe, K. E., Jüni, P., Slutsky, A. S., Ferrando, C., Mellado-Artigas, R., Fernández, J., Hernández, M., Castellá, M., Castro, P., Badia, J. R., … Juando-Prats, C. (2020). Efficacy of dexamethasone treatment for patients with the acute respiratory distress syndrome caused by COVID-19: Study protocol for a randomized controlled superiority trial. Trials, 21(717). https://doi.org/10.1186/s13063-020-04643-1

Vouloumanou, E. K., Makris, G. C., Karageorgopoulos, D. E., & Falagas, M. E. (2009). Probiotics for the prevention of respiratory tract infections: a systematic review. International Journal of Antimicrobial Agents, 34(3), 197.e1-197.e10. https://doi.org/10.1016/j.ijantimicag.2008.11.005

Wang, J., Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., Peng, Y., Zhang, D., Jie, Z., Wu, W., Qin, Y., Xue, W., Li, J., Han, L., … Wang, J. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418), 55–60. https://doi.org/10.1038/nature11450

Wang, Y., Zhang, D., Du, G., Zhao, J., Jin, Y., Fu, S., Gao, L., Cheng, Z., Lu, Q., Hu, Y., Luo, G., Wang, K., Lu, Y., Li, H., Wang, S., Ruan, S., Yang, C., Meli, C., Wang, Y., … Wang, C. (2020). Remdesivir in adults with severe COVID-19: a randomised, double-biind, placebo-controlled, multicentre trial. The Lancet, 395, 1569–1578. https://doi.org/10.1016/ S0140-6736(20)31022-9

Wang, Y., Zhou, F., Zhang, D., Zhao, J., Du, R., Hu, Y., Cheng, Z., Gao, L., Jin, Y., Luo, G., Fu, S., Lu, Q., Du, G., Wang, K., Lu, Y., & Fan, G. (2020). Evaluation of the efficacy and safety of intravenous remdesivir in adult patients with severe COVID-19 : study protocol for a phase 3 randomized, double-blind, placebo-controlled, multicentre trial. Trials, 21(244), 1–11. https://doi.org/10.1186/s13063-020-04352-9

Weiss, G. A., & Hennet, T. (2017). Mechanisms and consequences of intestinal dysbiosis. Cellular and Molecular Life Sciences, 74(16), 2959–2977. https://doi.org/10.1007/s00018-017-2509-x

Wiersinga, W. J., Rhodes, A., Cheng, A. C., Peacock, S. J., & Prescott, H. C. (2020). Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. Journal of American Medical Association, 324(8), 782–793. https://doi.org/10.1001/jama.2020.12839

World Health Organization. (2020). World Antimicrobial Awareness Week 2020 - Handle with care: United to preserve antimicrobials. https://www.who.int/news-room/events/detail/2020/11/18/default-calendar/world-antimicrobial-awareness-week-2020

World Health Organization. (2021). Call to Action on Antimicrobial Resistance 2021. https://www.who.int/news/item/30-07-2021-call-to-action-on-antimicrobial-resistance-2021

Xu, R., Wu, B., Liang, J., He, F., Gu, W., Li, K., Luo, Y., Chen, J., Gao, Y., Wu, Z., Wang, Y., Zhou, W., & Wang, M. (2020). Altered gut microbiota and mucosal immunity in patients with schizophrenia. Brain, Behavior, and Immunity, 85, 120–127. https://doi.org/10.1016/j.bbi.2019.06.039

Yang, T., Chakraborty, S., Saha, P., Mell, B., Cheng, X., Yeo, J. Y., Mei, X., Zhou, G., Mandal, J., Golonka, R., Yeoh, B. S., Putluri, V., Piyarathna, D. W. B., Putluri, N., McCarthy, C. G., Wenceslau, C. F., Sreekumar, A., Gewirtz, A. T., Vijay-Kumar, M., & Joe, B. (2020). Gnotobiotic Rats Reveal That Gut Microbiota Regulates Colonic mRNA of Ace2, the Receptor for SARS-CoV-2 Infectivity. Hypertension, 76(1), 1–3. https://doi.org/10.1161/HYPERTENSIONAHA.120.15360

Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Niu, P., Liu, X., Zhao, L., Dong, E., Song, C., Zhan, S., Lu, R., Li, H., Tan, W., & Liu, D. (2020). In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases, 71(15), 732–739. https://doi.org/10.1093/cid/ciaa237

Yeoh, Y. K., Zuo, T., Lui, G. C. Y., Zhang, F., Liu, Q., Li, A. Y. L., Chung, A. C. K., Cheung, C. P., Tso, E. Y. K., Fung, K. S. C., Chan, V., Ling, L., Joynt, G., Hui, D. S. C., Chow, K. M., Ng, S. S. S., Li, T. C. M., Ng, R. W. Y., Yip, T. C. F., … Ng, S. C. (2021). Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut Microbiota, 70(4), 698–706. https://doi.org/10.1136/gutjnl-2020-323020

Zhang, M., Sun, K., Wu, Y., Yang, Y., Tso, P., & Wu, Z. (2017). Interactions between Intestinal microbiota and host immune response in inflammatory bowel disease. Frontiers in Immunology, 8(AUG), 1–13. https://doi.org/10.3389/fimmu.2017.00942

Zhang, Y., Zeng, G., Pan, H., Li, C., Hu, Y., Chu, K., Han, W., Chen, Z., Tang, R., Yin, W., Chen, X., Hu, Y., Liu, X., Jiang, C., Li, J., Yang, M., Song, Y., Wang, X., Gao, Q., & Zhu, F. (2021). Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. The Lancet Infectious Diseases, 21(2), 181–192. https://doi.org/10.1016/S1473-3099(20)30843-4

Zhou, Y., Wang, F., Tang, J., Nussinov, R., & Cheng, F. (2020). Artificial intelligence in COVID-19 drug repurposing. The Lancet Digital Health, 2(12), e667–e676. https://doi.org/10.1016/S2589-7500(20)30192-8

Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R., & Goodman, A. L. (2019). Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature, 570(7762), 462–467. https://doi.org/10.1038/s41586-019-1291-3

Zuo, T., Zhang, F., Lui, G. C. Y., Yeoh, Y. K., Li, A. Y. L., Zhan, H., Wan, Y., Chung, A. C. K., Cheung, C. P., Chen, N., Lai, C. K. C., Chen, Z., Tso, E. Y. K., Fung, K. S. C., Chan, V., Ling, L., Joynt, G., Hui, D. S. C., Chan, F. K. L., & Ng, S. C. (2020). Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology, 159(3), 944-955.e8. https://doi.org/10.1053/j.gastro.2020.05.048

Published

12/03/2022

How to Cite

ABREU, J. A. C. de .; FREITAS, N. L. de .; AZEVEDO, P. R. G.; BRANDÃO, F. Probiotics – a sword or a shield in COVID-19 outcome?. Research, Society and Development, [S. l.], v. 11, n. 4, p. e11011427165, 2022. DOI: 10.33448/rsd-v11i4.27165. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27165. Acesso em: 21 nov. 2024.

Issue

Section

Health Sciences