Online hemodiafiltration (HDF) versus high-flux hemodialysis (hf-HD): A review
DOI:
https://doi.org/10.33448/rsd-v11i4.27237Keywords:
Biocompatible Materials; Cardiovascular Diseases; Renal Dialysis; Hemodiafiltration.Abstract
Chronic kidney disease affects a vast part of the world population and as a consequence gradually declines renal function. Patients enter the end stage of kidney disease as the disease progresses, and the use of renal replacement therapy such as hemodialysis then becomes necessary. With the advance of technology, new modalities of dialyzers have been made available in the market with the objective of making the hemodialysis process more efficient and of increasing its biocompatibility. This review aims to discuss different hemodialysis techniques, focusing on online hemodiafiltration and high-flux hemodialysis, in terms of molecular clearance, biocompatibility, cardiovascular stability, survival, safety, and costs. In comparison to conventional hemodialysis (low-flux), online hemodiafiltration and high-flux hemodialysis present a greater capacity to filtrate medium molecular weight molecules, presenting greater biocompatibility and maintaining cardiovascular stability during dialysis sessions, and constituting factors which can justify better outcomes of patients submitted to these modalities. However, studies differ on the real superiority of online hemodiafiltration when compared to high-flux hemodialysis, which highlights the need for further discussion on the subject.
References
Abad, S., Vega, A., Quiroga, B., Arroyo, D., Panizo, N., Reque, J. E., & López-Gómez, J. M. (2016). Protein-bound toxins: Added value in their removal with high convective volumes. Nefrología, 36(6), 637–642. https://doi.org/10.1016/j.nefroe.2016.05.011
Abdelsalam, M., Demerdash, T. M., Assem, M., Awais, M., Shaheen, M., Sabri, A., Alanany, H., Kashgary, A., & Alsuwaida, A. (2020). Improvement of clinical outcomes in dialysis: No convincing superiority in dialysis efficacy using hemodiafiltration vs high-flux hemodialysis. Therapeutic Apheresis and Dialysis, 25(4), 483-489. https://doi.org/10.1111/1744-9987.13492
Bain, M. A., Faull, R., Fornasini, G., Milne, R. W., & Evans, A. M. (2006). Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrology Dialysis Transplantation, 21(5), 1300–1304. https://doi.org/10.1093/ndt/gfk056
Barreto, F. C., Barreto, D. V., Liabeuf, S., Meert, N., Glorieux, G., Temmar, M., Choukroun, G., Vanholder, R., & Massy, Z. A. (2009). Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clinical Journal of the American Society of Nephrology, 4(10), 1551–1558. https://doi.org/10.2215/CJN.03980609
Belmouaz, M., Bauwens, M., Hauet, T., Bossard, V., Jamet, P., Joly, F., Chikhi, E., Joffrion, S., Gand, E., & Bridoux, F. (2020). Comparison of the removal of uraemic toxins with medium cut-off and high-flux dialysers: A randomized clinical trial. Nephrology Dialysis Transplantation, 35(2), 328–335. https://doi.org/10.1093/ndt/gfz189
Bikbov, B., Purcell, C. A., Levey, A. S., Smith, M., Abdoli, A., Abebe, M., Adebayo, O. M., Afarideh, M., Agarwal, S. K., Agudelo-Botero, M., Ahmadian, E., Al-Aly, Z., Alipour, V., Almasi-Hashiani, A., Al-Raddadi, R. M., Alvis-Guzman, N., Amini, S., Andrei, T., Andrei, C. L., &Murray, C. J. L. (2020). Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 395(10225), 709–733. https://doi.org/10.1016/S0140-6736(20)30045-3
Bolasco, P., Contu, A., Meloni, P., Vacca, D., & Murtas, S. (2013). The evolution of technological strategies in the prevention of dialysis water pollution: Sixteen years’ experience. Blood Purification, 34(3–4), 238–245. https://doi.org/10.1159/000343127
Boschetti-De-Fierro, A., Voigt, M., Storr, M., & Krause, B. (2015). MCO Membranes: Enhanced Selectivity in High-Flux Class. Scientific Reports, 5, 1–7. https://doi.org/10.1038/srep18448
Bousquet-Santos, K., Da Costa, L. da G., & Andrade, J. M. D. L. (2019). Nutritional status of individuals with chronic renal failure in hemodialysis in the Unified Health System. Ciência e Saúde Coletiva, 24(3), 1189–1199. https://doi.org/10.1590/1413-81232018243.11192017
Canaud, B., Bragg-Gresham, J. L., Marshall, M. R., Desmeules, S., Gillespie, B. W., Depner, T., Klassen, P., & Port, F. K. (2006). Mortality risk for patients receiving hemodiafiltration versus hemodialysis: European results from the DOPPS. Kidney International, 69(11), 2087–2093. https://doi.org/10.1038/sj.ki.5000447
Canaud, B., Köhler, K., Sichart, J. M., & Möller, S. (2020). Global prevalent use, trends and practices in haemodiafiltration. Nephrology Dialysis Transplantation, 35(3), 398–407. https://doi.org/10.1093/ndt/gfz005
Chang, T., Define, L., Alexander, T., & Kyu, T. (2014). In vitro investigation of antioxidant, anti-inflammatory, and antiplatelet adhesion properties of genistein-modified poly (ethersulfone )/ poly (vinylpyrrolidone ) hemodialysis membranes. Journal of Biomedical Materials Research Part B Applied Bioamterials, 539-547. https://doi.org/10.1002/jbm.b.33215
Chuasuwan, A., Chuasuwan, A., Pooripussarakul, S., Thakkinstian, A., Ingsathit, A., Ingsathit, A., & Pattanaprateep, O. (2020). Comparisons of quality of life between patients underwent peritoneal dialysis and hemodialysis: A systematic review and meta-analysis. Health and Quality of Life Outcomes, 18(1), 1–11. https://doi.org/10.1186/s12955-020-01449-2
Ciarimboli, G., Lancaster, C. S., Schlatter, E., Franke, R. M., Sprowl, J. A., Pavenstädt, H., Massmann, V., Guckel, D., Mathijssen, R. H. J., Yang, W., Pui, C. H., Relling, M. V., Herrmann, E., & Sparreboom, A. (2012). Proximal tubular secretion of creatinine by organic cation transporter OCT2 in cancer patients. Clinical Cancer Research, 18(4), 1101–1108. https://doi.org/10.1158/1078-0432.CCR-11-2503
Clark, W. R. C., Amburger, R. J. H., Ysaght, M. J. L., Division, R., Corporation, B. H., Park, M., & Division, N. (1999). Effect of membrane composition and structure on solute removal and biocompatibility in hemodialysis. Kidney International, 56(6), 2005–2015.
Clark, W. R., Dehghani, N. L., Narsimhan, V., & Ronco, C. (2019). Uremic Toxins and their Relation to Dialysis Efficacy. Blood Purification, 48(4), 299–314. https://doi.org/10.1159/000502331
Clark, W. R., & Gao, D. (2002). Determinants of uraemic toxin removal. Nephrology Dialysis Transplantation, 17(SUPPL. 3), 30–34. https://doi.org/10.1093/ndt/17.suppl_3.30
Cohen-Mazor, M., Mazor, R., Kristal, B., & Sela, S. (2014). Elastase and cathepsin G from primed leukocytes cleave vascular endothelial cadherin in hemodialysis patients. BioMed Research International, 2014, 10 pages. https://doi.org/10.1155/2014/459640
Coulliette, A. D., & Arduino, M. J. (2013). Hemodialysis and water quality. Seminars in Dialysis, 26(4), 427–438. https://doi.org/10.1111/sdi.12113
Den Hoedt, C. H., Bots, M. L., Grooteman, M. P. C., Van Der Weerd, N. C., Mazairac, A. H. A., Penne, E. L., Levesque, R., Ter Wee, P. M., Nubé, M. J., Blankestijn, P. J., & Van Den Dorpel, M. A. (2014). Online hemodiafiltration reduces systemic inflammation compared to low-flux hemodialysis. Kidney International, 86(2), 423–432. https://doi.org/10.1038/ki.2014.9
Devine, E., Krieter, D. H., Rüth, M., Jankovski, J., & Lemke, H. D. (2014). Binding affinity and capacity for the uremic toxin indoxyl sulfate. Toxins, 6(2), 416–430. https://doi.org/10.3390/toxins6020416
Donadio, C., Kanaki, A., Sami, N., & Tognotti, D. (2017). High-Flux Dialysis: Clinical, Biochemical, and Proteomic Comparison with Low-Flux Dialysis and On-Line Hemodiafiltration. Blood Purification, 44(2), 129–139. https://doi.org/10.1159/000476053
Eknoyan, G., Beck, G. J., Cheung, A. K., Daugirdas, J. T., Greene, T., Kusek, J. W., Allon, M., Bailey, J., Delmez, J. A., Depner, T. A., Dwyer, J. T., Levey, A. S. & et al. (2002). Effect of dialysis and membrane flux in Maintenance Hemodialysis. The New England Journal of Medicine, 347(25), 2010–2019.
Franco, A. O., Starosta, R. T., & Roriz-Cruz, M. (2019). The specific impact of uremic toxins upon cognitive domains: a review. Jornal Brasileiro de Nefrologia, 41(1), 103–111. https://doi.org/10.1590/2175-8239-JBN-2018-0033
Gessner, A., König, J., & Fromm, M. F. (2018). Contribution of multidrug and toxin extrusion protein 1 (MATE1) to renal secretion of trimethylamine-N-oxide (TMAO). Scientific Reports, 8(1), 22–24. https://doi.org/10.1038/s41598-018-25139-8
Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E., & Hsu, C. (2004). Chronic Kidney Disease and the Risks of Death, Cardiovascular Events, and Hospitalization. New England Journal of Medicine, 351(13), 1296–1305. https://doi.org/10.1056/nejmoa041031
Gomółka, M., Niemczyk, L., Szamotulska, K., Mossakowska, M., Smoszna, J., Rymarz, A., Pączek, L., & Niemczyk, S. (2020). Biocompatibility of Hemodialysis. Advances in Experimental Medicine and Biology, 1251, 91–97. https://doi.org/10.1007/5584_2019_461
Grooteman, M. P. C., Van Den Dorpel, M. A., Bots, M. L., Penne, E. L., Van Der Weerd, N. C., Mazairac, A. H. A., Den Hoedt, C. H., Van Der Tweel, I., Lévesque, R., Nubé, M. J., Ter Wee, P. M., & Blankestijn, P. J. (2012). Effect of online hemodiafiltration on all-cause mortality and cardiovascular outcomes. Journal of the American Society of Nephrology, 23(6), 1087–1096. https://doi.org/10.1681/ASN.2011121140
Hai, X., Landeras, V., Dobre, M. A., DeOreo, P., Meyer, T. W., & Hostetter, T. H. (2015). Mechanism of prominent trimethylamine oxide (TMAO) accumulation in hemodialysis patients. PLoS ONE, 10(12), 1–7. https://doi.org/10.1371/journal.pone.0143731
Han, M., Guedes, M., Larkin, J., Raimann, J. G., Lesqueves Barra, A. B., Canziani, M. E. F., Cuvello Neto, A. L., Poli-De-Figueiredo, C. E., Kotanko, P., & Pecoits-Filho, R. (2020). Effect of Hemodiafiltration on Self-Reported Sleep Duration: Results from a Randomized Controlled Trial. Blood Purification, 49(1–2), 168–177. https://doi.org/10.1159/000504242
Itoh, Y., Ezawa, A., Kikuchi, K., Tsuruta, Y., & Niwa, T. (2012). Protein-bound uremic toxins in hemodialysis patients measured by liquid chromatography/tandem mass spectrometry and their effects on endothelial ROS production. Analytical and Bioanalytical Chemistry, 403(7), 1841–1850. https://doi.org/10.1007/s00216-012-5929-3
Kalantar-zadeh, K., Block, G., Mcallister, C. J., Humphreys, M. H., Kopple, J. D., & Al, K. E. T. (2018). Appetite and inflammation , nutrition , anemia , and clinical outcome in hemodialysis in patients. The American Journal of Clinical Nutrition, 80(2), 299–307.
Kawasaki, T., Uchino, J., Shinoda, T., & Kawanishi, H. (2009). Guidance of technical management of dialysis water and dialysis fluid for the Japan association for clinical engineering technologists. Blood Purification, 27(SUPPL. 1), 41–49. https://doi.org/10.1159/000213497
Kim, T. H., Kim, S. H., Kim, T. Y., Park, H. Y., Jung, K. S., Lee, M. H., Jhee, J. H., Lee, J. E., Choi, H. Y., & Park, H. C. (2019). Removal of large middle molecules via haemodialysis with medium cut-off membranes at lower blood flow rates: An observational prospective study. BMC Nephrology, 21(1), 1–9. https://doi.org/10.1186/s12882-019-1669-3
Kirsch, A. H., Lyko, R., Nilsson, L. G., Beck, W., Amdahl, M., Lechner, P., Schneider, A., Wanner, C., Rosenkranz, A. R., & Krieter, D. H. (2017). Performance of hemodialysis with novel medium cut-off dialyzers. Nephrology Dialysis Transplantation, 32(1), 165–172. https://doi.org/10.1093/ndt/gfw310
La Milia, V., Ravasi, C., Carfagna, F., Alberghini, E., Baragetti, I., Buzzi, L., Ferrario, F., Furiani, S., Barbone, G. S., & Pontoriero, G. (2019). Sodium removal and plasma tonicity balance are not different in hemodialysis and hemodiafiltration using high-flux membranes. Journal of Nephrology, 32(3), 461–469. https://doi.org/10.1007/s40620-018-00581-z
Larkin, J. W., Han, M., Han, H., Guedes, M. H., Gonçalves, P. B., Poli-de-Figueiredo, C. E., Cuvello-Neto, A. L., Barra, A. B. L., Moraes, T. P., Usvyat, L. A., Kotanko, P., Canziani, M. E. F., Raimann, J. G., Pecoits-Filho, R., & For the HDFIT Study Investigators (2019). Impact of Hemodialysis and Post-Dialysis Period on Granular Activity Levels. BMC Nephrology, 21, 197-214. https://doi.org/10.21203/rs.2.16392/v1
Ledebo, I. (1999). On-line hemodiafiltration: Technique and therapy. Advances in Renal Replacement Therapy, 6(2), 195–208. https://doi.org/10.1016/S1073-4449(99)70038-5
Ingrid, L., & Blankestijn, P. J. (2010). Haemodiafiltration - Optimal efficiency and safety. NDT Plus, 3(1), 8–16. https://doi.org/10.1093/ndtplus/sfp149
Leme, J., Guedes, M., Larkin, J., Han, M., Barra, A. B. L., Canziani, M. E. F., Cuvello Neto, A. L., Poli-de-Figueiredo, C. E., de Moraes, T. P., & Pecoits-Filho, R. (2020). Patient perception of vitality and measured physical activity in patients receiving haemodialysis. Nephrology, 25(11), 865–871. https://doi.org/10.1111/nep.13758
Lévesque, R., Marcelli, D., Cardinal, H., Caron, M. L., Grooteman, M. P. C., Bots, M. L., Blankestijn, P. J., Nubé, M. J., Grassmann, A., Canaud, B., & Gandjour, A. (2015). Cost-Effectiveness Analysis of High-Efficiency Hemodiafiltration Versus Low-Flux Hemodialysis Based on the Canadian Arm of the CONTRAST Study. Applied Health Economics and Health Policy, 13(6), 647–659. https://doi.org/10.1007/s40258-015-0179-0
Liabeuf, S., Barreto, D. V., Barreto, F. C., Meert, N., Glorieux, G., Schepers, E., Temmar, M., Choukroun, G., Vanholder, R., & Massy, Z. A. (2010). Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrology Dialysis Transplantation, 25(4), 1183–1191. https://doi.org/10.1093/ndt/gfp592
Locatelli, F., Altieri, P., Andrulli, S., Bolasco, P., Sau, G., Pedrini, L. A., Basile, C., David, S., Feriani, M., Montagna, G., Di Iorio, B. R., Memoli, B., Cravero, R., Battaglia, G., & Zoccali, C. (2010). Hemofiltration and hemodiafiltration reduce intradialytic hypotension in ESRD. Journal of the American Society of Nephrology, 21(10), 1798–1807. https://doi.org/10.1681/ASN.2010030280
Locatelli, F., Karaboyas, A., Pisoni, R. L., Robinson, B. M., Fort, J., Vanholder, R., Rayner, H. C., Kleophas, W., Jacobson, S. H., Combe, C., Port, F. K., & Tentori, F. (2018). Mortality risk in patients on hemodiafiltration versus hemodialysis: A “real-world” comparison from the DOPPS. Nephrology Dialysis Transplantation, 33(4), 683–689. https://doi.org/10.1093/ndt/gfx277
Locatelli, F., Violo, L., Longhi, S., & Del Vecchio, L. (2015). Current Evidence in Haemodiafiltration. Blood Purification, 40(SUPPL 1), 24–29. https://doi.org/10.1159/000437410
Lornoy, W., Becaus, I., Billiouw, J. M., Sierens, L., Van Malderen, P., & D’Haenens, P. (2000). On-line haemodiafiltration. Remarkable removal of β2-microglobulin. Long-term clinical observations. Nephrology Dialysis Transplantation, 15(SUPPL. 1), 49–54. https://doi.org/10.1093/oxfordjournals.ndt.a027964
Madero, M., Cano, K. B., Campos, I., Tao, X., Maheshwari, V., Brown, J., Cornejo, B., Handelman, G., Thijssen, S., & Kotanko, P. (2019). Removal of protein-bound uremic toxins during hemodialysis using a binding competitor. Clinical Journal of the American Society of Nephrology, 14(3), 394–402. https://doi.org/10.2215/CJN.05240418
Maduell, F., Arias-Guillen, M., Fontseré, N., Ojeda, R., Rico, N., Vera, M., Elena, M., Bedini, J. L., Wieneke, P., & Campistol, J. M. (2014). Elimination of large uremic toxins by a dialyzer specifically designed for high-volume convective therapies. Blood Purification, 37(2), 125–130. https://doi.org/10.1159/000358214
Maduell, F., Moreso, F., Pons, M., Ramos, R., Mora-Macià, J., Carreras, J., Soler, J., Torres, F., Campistol, J. M., & Martinez-Castelao, A. (2013). High-efficiency postdilution online hemodiafiltration reduces all-cause mortality in hemodialysis patients. Journal of the American Society of Nephrology, 24(3), 487–497. https://doi.org/10.1681/ASN.2012080875
Mazairac, A. H. A., Blankestijn, P. J., Grooteman, M. P. C., Lars Penne, E., Van Der Weerd, N. C., Den Hoedt, C. H., Buskens, E., Van Den Dorpel, M. A., Ter Wee, P. M., Nubé, M. J., Bots, M. L., & Ardine De Wit, G. (2013). The cost-utility of haemodiafiltration versus haemodialysis in the convective transport study. Nephrology Dialysis Transplantation, 28(7), 1865–1873. https://doi.org/10.1093/ndt/gft045
Meyer, T. W., Walther, J. L., Pagtalunan, M. E., Martinez, A. W., Torkamani, A., Fong, P. D., Recht, N. S., Robertson, C., & Hostetter, T. H. (2005). The clearance of protein-bound solutes by hemofiltration and hemodiafiltration. Kidney International, 68(2), 867–877. https://doi.org/10.1111/j.1523-1755.2005.00469.x
Missailidis, C., Hällqvist, J., Qureshi, A. R., Barany, P., Heimbürger, O., Lindholm, B., Stenvinkel, P., & Bergman, P. (2016). Serum trimethylamine-N-Oxide is strongly related to renal function and predicts outcome in chronic kidney disease. PLoS ONE, 11(1), 1–14. https://doi.org/10.1371/journal.pone.0141738
Miyake, T., Mizuno, T., Mochizuki, T., Kimura, M., Matsuki, S., Irie, S., Ieiri, I., Maeda, K., & Kusuhara, H. (2017). Involvement of Organic Cation Transporters in the Kinetics of Trimethylamine N-oxide. Journal of Pharmaceutical Sciences, 106(9), 2542–2550. https://doi.org/10.1016/j.xphs.2017.04.067
Miyamoto, Y., Watanabe, H., Noguchi, T., Kotani, S., Nakajima, M., Kadowaki, D., Otagiri, M., & Maruyama, T. (2011). Organic anion transporters play an important role in the uptake of p-cresyl sulfate, a uremic toxin, in the kidney. Nephrology Dialysis Transplantation, 26(8), 2498–2502. https://doi.org/10.1093/ndt/gfq785
Morena, M., Creput, C., Bouzernidj, M., Rodriguez, A., Chalabi, L., Seigneuric, B., Lauret, C., Bargnoux, A. S., Dupuy, A. M., & Cristol, J. P. (2019). Randomised trial on clinical performances and biocompatibility of four high-flux hemodialyzers in two mode treatments: hemodialysis vs post dilution hemodiafiltration. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-54404-7
Ojeda, R., Arias-Guillén, M., Gómez, M., Vera, M., Fontseré, N., Rodas, L., Filella, X., Reverter, J. C., Lozano, F., Villamor, N., & Maduell, F. (2020). Study of Biocompatibility of Membranes in Online Hemodiafiltration. Blood Purification, 49(4), 400–408. https://doi.org/10.1159/000504954
Ok, E., Asci, G., Toz, H., Ok, E. S., Kircelli, F., Yilmaz, M., Hur, E., Demirci, M. S., Demirci, C., Duman, S., Basci, A., Adam, S. M., Isik, I. O., Zengin, M., Suleymanlar, G., Yilmaz, M. E., & Ozkahya, M. (2013). Mortality and cardiovascular events in online haemodiafiltration (OL-HDF) compared with high-flux dialysis: Results from the Turkish OL-HDF Study. Nephrology Dialysis Transplantation, 28(1), 192–202. https://doi.org/10.1093/ndt/gfs407
Okuno, S., Ishimura, E., Kohno, K., Fujino-Katoh, Y., Maeno, Y., Yamakawa, T., Inaba, M., & Nishizawa, Y. (2009). Serum β2-microglobulin level is a significant predictor of mortality in maintenance haemodialysis patients. Nephrology Dialysis Transplantation, 24(2), 571–577. https://doi.org/10.1093/ndt/gfn521
Pecoits-Filho, R., Larkin, J., Poli-de-Figueiredo, C. E., Cuvello-Neto, A. L., Barra, A. B. L., Gonçalves, P. B., Sheth, S., Guedes, M., Han, M., Calice-Silva, V., de Castro, M. C. M., Kotanko, P., de Moraes, T. P., Raimann, J. G., & Canziani, M. E. F. (2020). Effect of hemodiafiltration on measured physical activity: primary results of the HDFIT randomized controlled trial. Nephrology Dialysis Transplantation, 36(6), 1057-1070.
Pecoits-Filho, R., Larkin, J. W., Figueiredo, C. E. P. de, Neto, A. L. C., Raimann, J. G., Barra, A. B., Canziani, M. E. F., Canhada, S., Campos, L. G. de, Woehl, J., Gonçalves, P. B., Han, H., & Moraes, T. P. de. (2019). Study Design and Baseline Characteristics of the Impact of HemoDiaFIltration on Physical Activity and Self-Reported Outcomes: A Randomized Controlled Trial (HDFIT Trial) in Brazil. BMC Nefrology, 20(1), 98-111.
Pelletier, C. C., Croyal, M., Ene, L., Aguesse, A., Billon-Crossouard, S., Krempf, M., Lemoine, S., Guebre-Egziabher, F., Juillard, L., & Soulage, C. O. (2019). Elevation of trimethylamine-N-oxide in chronic kidney disease: Contribution of decreased glomerular filtration rate. Toxins, 11(11), 635-649. https://doi.org/10.3390/toxins11110635
Penne, E. L., Visser, L., Van Den Dorpel, M. A., Van Der Weerd, N. C., Mazairac, A. H. A., Van Jaarsveld, B. C., Koopman, M. G., Vos, P., Feith, G. W., Kremer Hovinga, T. K., Van Hamersvelt, H. W., Wauters, I. M., Bots, M. L., Nubé, M. J., Ter Wee, P. M., Blankestijn, P. J., & Grooteman, M. P. C. (2009). Microbiological quality and quality control of purified water and ultrapure dialysis fluids for online hemodiafiltration in routine clinical practice. Kidney International, 76(6), 665–672. https://doi.org/10.1038/ki.2009.245
Penny, J. D., Grant, C., Salerno, F., Brumfield, A., Mianulli, M., Poole, L., & Mcintyre, C. W. (2018). Percutaneous perfusion monitoring for the detection of hemodialysis induced cardiovascular injury. Hemodialysis International, 22(3), 351–358. https://doi.org/10.1111/hdi.12632
Perl, J., Karaboyas, A., Morgenstern, H., Sen, A., Rayner, H. C., Vanholder, R. C., Combe, C., Hasegawa, T., Finkelstein, F. O., Lopes, A. A., Robinson, B. M., Pisoni, R. L., & Tentori, F. (2017). Association between changes in quality of life and mortality in hemodialysis patients: Results from the DOPPS. Nephrology Dialysis Transplantation, 32(3), 521–527. https://doi.org/10.1093/ndt/gfw233
Peters, S. A. E., Bots, M. L., Canaud, B., Davenport, A., Grooteman, M. P. C., Kircelli, F., Locatelli, F., Maduell, F., Morena, M., Nubé, M. J., Ok, E., Torres, F., Woodward, M., & Blankestijn, P. J. (2016). Haemodiafiltration and mortality in end-stage kidney disease patients: A pooled individual participant data analysis from four randomized controlled trials. Nephrology Dialysis Transplantation, 31(6), 978–984. https://doi.org/10.1093/ndt/gfv349
Petrie, J. J. B., Ng, T. G., & Hawley, C. M. (2008). Review Article: Is it time to embrace haemodiafiltration for centre-based haemodialysis? Nephrology, 13(4), 269–277. https://doi.org/10.1111/j.1440-1797.2008.00964.x
Pieroni, L., Levi Mortera, S., Greco, V., Sirolli, V., Ronci, M., Felaco, P., Fucci, G., De Fulviis, S., Massoud, R., Condò, S., Capria, A., Di Daniele, N., Bernardini, S., Urbani, A., & Bonomini, M. (2015). Biocompatibility assessment of haemodialysis membrane materials by proteomic investigations. Molecular BioSystems, 11(6), 1633–1643. https://doi.org/10.1039/c5mb00058k
Poesen, R., Claes, K., Evenepoel, P., De Loor, H., Augustijns, P., Kuypers, D., & Meijers, B. (2016). Microbiota-derived phenylacetylglutamine associates with overall mortality and cardiovascular disease in patients with CKD. Journal of the American Society of Nephrology, 27(11), 3479–3487. https://doi.org/10.1681/ASN.2015121302
Porrini, E., Ruggenenti, P., Luis-Lima, S., Carrara, F., Jiménez, A., de Vries, A. P. J., Torres, A., Gaspari, F., & Remuzzi, G. (2019). Estimated GFR: time for a critical appraisal. Nature Reviews Nephrology, 15(3), 177–190. https://doi.org/10.1038/s41581-018-0080-9
Ramponi, F., Ronco, C., Mason, G., Rettore, E., Marcelli, D., Martino, F., Neri, M., Martin-Malo, A., Canaud, B., & Locatelli, F. (2016). Cost-effectiveness analysis of online hemodiafiltration versus high-flux hemodialysis. ClinicoEconomics and Outcomes Research, 8, 531–540. https://doi.org/10.2147/CEOR.S109649
Reyes, H. B. (2020). Artículos de Revisión. Revista Médica de Chile, 148(1), 103-108. http://dx.doi.org/10.4067/s0034-98872020000100103.
Ronco, C., Brendolan, A., Milan, M., Rodeghiero, M. P., Zanella, M., & La Greca, G. (2000). Impact of biofeedback-induced cardiovascular stability on hemodialysis tolerance and efficiency. Kidney International, 58(2), 800–808. https://doi.org/10.1046/j.1523-1755.2000.00229.x
Ronco, Claudio, & Clark, W. R. (2018). Haemodialysis membranes. Nature Reviews Nephrology, 14(6), 394–410. https://doi.org/10.1038/s41581-018-0002-x
Ronco, C., Marchionna, N., Brendolan, A., Neri, M., Lorenzin, A., & Martínez Rueda, A. J. (2018). Expanded haemodialysis: From operational mechanism to clinical results. Nephrology Dialysis Transplantation, 33 (SUPPL. 3), iii41–iii47. https://doi.org/10.1093/ndt/gfy202
Roth, V. R., & Jarvis, W. R. (2000). Outbreaks of infection and/or pyrogenic reactions in dialysis patients. Seminars in Dialysis, 13(2), 92–96. https://doi.org/10.1046/j.1525-139x.2000.00027.x
Sakai, K. (2000). Dialysis membranes for blood purification. Frontiers of Medical and Biological Engineering. The International Journal of the Japan Society of Medical Electronics and Biological Engineering, 10(2), 117–129. https://doi.org/10.1163/15685570052061973
Saran, R., Robinson, B., Abbott, K. C., Agodoa, L. Y. C., Albertus, P., Ayanian, J., Balkrishnan, R., Bragg-Gresham, J., Cao, J., Chen, J. L. T., Cope, E., Dharmarajan, S., Dietrich, X., Eckard, A., Eggers, P. W., Gaber, C., Gillen, D., Gipson, D., Gu, H., Shahinian, V. (2017). US Renal Data System 2016 Annual Data Report: Epidemiology of Kidney Disease in the United States. American Journal of Kidney Diseases, 69(3), A7–A8. https://doi.org/10.1053/j.ajkd.2016.12.004
Schiffl, H. (2019). Online hemodiafiltration and mortality risk in end-stage renal disease patients: A critical appraisal of current evidence. Kidney Research and Clinical Practice, 38(2), 159–168. https://doi.org/10.23876/j.krcp.18.0160
Shen, H., Liu, T., Morse, B. L., Zhao, Y., Zhang, Y., Qiu, X., Chen, C., Lewin, A. C., Wang, X. T., Liu, G., Christopher, L. J., Marathe, P., & Lai, Y. (2015). Characterization of Organic Anion Transporter 2 (SLC22A7): A Highly Efficient Transporter for Creatinine and Species-Dependent Renal Tubular Expression. Drug metabolism and disposition: the biological fate of chemicals, 43(7), 984–993. https://doi.org/10.1124/dmd.114.062364
Shi, Y., Tian, H., Wang, Y., Shen, Y., Zhu, Q., & Ding, F. (2019). Effect of ionic strength, pH and chemical displacers on the percentage protein binding of protein-bound uremic toxins. Blood Purification, 47(4), 351–360. https://doi.org/10.1159/000495343
Shroff, R., Bayazit, A., Stefanidis, C. J., Askiti, V., Azukaitis, K., Canpolat, N., Agbas, A., Anarat, A., Aoun, B., Bakkaloglu, S., Bhowruth, D., Borzych-Duzałka, D., Bulut, I. K., Büscher, R., Dempster, C., Duzova, A., Habbig, S., Hayes, W., Hegde, S., & Schmitt, C. P. (2018). Effect of haemodiafiltration vs conventional haemodialysis on growth and cardiovascular outcomes in children - The HDF, heart and height (3H) study. BMC Nephrology, 19(1), 199–209. https://doi.org/10.1186/s12882-018-0998-y
Smith, J., & Pfaendtner, J. (2020). Elucidating the Molecular Interactions between Uremic Toxins and the Sudlow II Binding Site of Human Serum Albumin. Journal of Physical Chemistry B, 124(19), 3922–3930. https://doi.org/10.1021/acs.jpcb.0c02015
Smith, J. R., Zimmer, N., Bell, E., Francq, B. G., McConnachie, A., & Mactier, R. (2017). A Randomized, Single-Blind, Crossover Trial of Recovery Time in High-Flux Hemodialysis and Hemodiafiltration. American Journal of Kidney Diseases, 69(6), 762–770. https://doi.org/10.1053/j.ajkd.2016.10.025
Stubbs, J. R., House, J. A., Ocque, A. J., Zhang, S., Johnson, C., Kimber, C., Schmidt, K., Gupta, A., Wetmore, J. B., Nolin, T. D., Spertus, J. A., & Yu, A. S. (2016). Serum Trimethylamine-N-Oxide is Elevated in CKD and Correlates with Coronary Atherosclerosis Burden. Journal of the American Society of Nephrology, 27(1), 305–313. https://doi.org/10.1681/ASN.2014111063
Suchy-Dicey, A. M., Laha, T., Hoofnagle, A., Newitt, R., Sirich, T. L., Meyer, T. W., Thummel, K. E., Yanez, N. D., Himmelfarb, J., Weiss, N. S., & Kestenbaum, B. R. (2016). Tubular secretion in CKD. Journal of the American Society of Nephrology, 27(7), 2148–2155. https://doi.org/10.1681/ASN.2014121193
Susantitaphong, P., Siribamrungwong, M., & Jaber, B. L. (2013). Convective therapies versus low-flux hemodialysis for chronic kidney failure: A meta-analysis of randomized controlled trials. Nephrology Dialysis Transplantation, 28(11), 2859–2874. https://doi.org/10.1093/ndt/gft396
Takura, T., Kawanishi, H., Minakuchi, J., Nagake, Y., & Takahashi, S. (2013). Cost-effectiveness analysis of on-line hemodiafiltration in Japan. Blood Purification, 35(SUPPL. 1), 85–89. https://doi.org/10.1159/000346358
Tanihara, Y., Masuda, S., Sato, T., Katsura, T., Ogawa, O., & Inui, K. ichi. (2007). Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H+-organic cation antiporters. Biochemical Pharmacology, 74(2), 359–371. https://doi.org/10.1016/j.bcp.2007.04.010
Tao, X., Thijssen, S., Kotanko, P., Ho, C. H., Henrie, M., Stroup, E., & Handelman, G. (2016). Improved dialytic removal of protein-bound uraemic toxins with use of albumin binding competitors: An in vitro human whole blood study. Scientific Reports, 6(March), 2–10. https://doi.org/10.1038/srep23389
Tattersall, J. E., & Ward, R. A. (2013). Online haemodiafiltration: Definition, dose quantification and safety revisited. Nephrology Dialysis Transplantation, 28(3), 542–550. https://doi.org/10.1093/ndt/gfs530
Teft, W. A., Morse, B. L., Leake, B. F., Wilson, A., Mansell, S. E., Hegele, R. A., Ho, R. H., & Kim, R. B. (2017). Identification and Characterization of Trimethylamine-N-oxide Uptake and Efflux Transporters. Molecular Pharmaceutics, 14(1), 310–318. https://doi.org/10.1021/acs.molpharmaceut.6b00937
Thomas, G., & Jaber, B. L. (2009). Convective therapies for removal of middle molecular weight uremic toxins in end-stage renal disease: A review of the evidence. Seminars in Dialysis, 22(6), 610–614. https://doi.org/10.1111/j.1525-139X.2009.00665.x
Tomo, T. (2016). Biocompatibility of Hemodiafilters. Contributions to Nephrology, 189, 210–214. https://doi.org/10.1159/000450803
Urakami, Y., Kimura, N., Okuda, M., & Inui, K. I. (2004). Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidney. Pharmaceutical Research, 21(6), 976–981. https://doi.org/10.1023/B:PHAM.0000029286.45788.ad
Vadakedath, S., & Kandi, V. (2017). Dialysis: A Review of the Mechanisms Underlying Complications in the Management of Chronic Renal Failure. Cureus, 9(8), 1-8. https://doi.org/10.7759/cureus.1603
Van Biesen, W., & Eloot, S. (2019). Enhanced removal of protein-bound uremic toxins using displacers: Road to success? Clinical Journal of the American Society of Nephrology, 14(3), 324–326. https://doi.org/10.2215/CJN.00500119
Van Gelder, M. K., Middel, I. R., Vernooij, R. W. M., Bots, M. L., Verhaar, M. C., Masereeuw, R., Grooteman, M. P., Nubé, M. J., van den Dorpel, M. A., Blankestijn, P. J., Rookmaaker, M. B., & Gerritsen, K. G. F. (2020). Protein-bound uremic toxins in hemodialysis patients relate to residual kidney function, are not influenced by convective transport, and do not relate to outcome. Toxins, 12(4), 234-254 . https://doi.org/10.3390/toxins12040234
Vanholder, R. C., & Glorieux, G. L. (2003). An Overview of Uremic Toxicity. Hemodialysis International, 7(2), 156–161. https://doi.org/10.1046/j.1492-7535.2003.00034.x
Vanholder, R., Laecke, S., & Glorieux, G. (2008). What is new in uremic toxicity? Pediatric Nephrology, 23(8), 1211–1221. https://doi.org/10.1007/s00467-008-0762-9
Vanholder, R., Massy, Z., Argiles, A., Spasovski, G., Verbeke, F., Lameire, N., Beige, J., Brunet, P., Cohen, G., De Deyn, P. P., Descamps-Latscha, B., Herget-Rosenthal, S., Hörl, W., Jankowski, J., Jörres, A., Rodriguez, M., Stegmayr, B., Stenvinkel, P., Wanner, C., & Zidek, W. (2005). Chronic kidney disease as cause of cardiovascular morbidity and mortality. Nephrology Dialysis Transplantation, 20(6), 1048–1056. https://doi.org/10.1093/ndt/gfh813
Vaslaki, L., Karátson, A., Vörös, P., Major, L., Pethö, F., Ladányi, E., Weber, C., Mitteregger, R., & Falkenhagen, D. (2000). Can sterile and pyrogen-free on-line substitution fluid be routinely delivered? A multicentric study on the microbiological safety of on-line haemodiafiltration. Nephrology Dialysis Transplantation, 15(SUPPL. 1), 74–78. https://doi.org/10.1093/oxfordjournals.ndt.a027968
Villa, G., Rodríguez-Carmona, A., Fernández-Ortiz, L., Cuervo, J., Rebollo, P., Otero, A., & Arrieta, J. (2011). Cost analysis of the Spanish renal replacement therapy programme. Nephrology Dialysis Transplantation, 26(11), 3709–3714. https://doi.org/10.1093/ndt/gfr088
Wang, K., & Kestenbaum, B. (2018). Proximal tubular secretory clearance: a neglected partner of kidney function. Clinical Journal of the American Society of Nephrology, 13(8), 1291–1296. https://doi.org/10.2215/CJN.12001017
Ward, R. A., Vienken, J., Silverstein, D. M., Ash, S., & Canaud, B. (2018). Regulatory considerations for hemodiafiltration in the United States. Clinical Journal of the American Society of Nephrology, 13(9), 1444–1449. https://doi.org/10.2215/CJN.12641117
Weiner, D. E., Falzon, L., Skoufos, L., Bernardo, A., Beck, W., Xiao, M., & Tran, H. (2020). Efficacy and safety of expanded hemodialysis with the theranova 400 dialyzer: A randomized controlled trial. Clinical Journal of the American Society of Nephrology, 15(9), 1310–1319. https://doi.org/10.2215/CJN.01210120
Wikoff, W. R., Nagle, M. A., Kouznetsova, V. L., Tsigelny, I. F., & Nigam, S. K. (2011). Untargeted metabolomics identifies enterobiome metabolites and putative uremic toxins as substrates of organic anion transporter 1 (OAT1). Journal of Proteome Research, 10(6), 2842–2851. https://doi.org/10.1021/pr200093w
Wolley, M., Jardine, M., & Hutchison, C. A. (2018). Exploring the clinical relevance of providing increased removal of large middle molecules. Clinical Journal of the American Society of Nephrology, 13(5), 805–814. https://doi.org/10.2215/CJN.10110917
Wu, W., Bush, K. T., & Nigam, S. K. (2017). Key Role for the Organic Anion Transporters, OAT1 and OAT3, in the in vivo Handling of Uremic Toxins and Solutes. Scientific Reports, 7(1), 4939–4948. https://doi.org/10.1038/s41598-017-04949-2
Xue, H. Y., Duan, B., Li, Z.-J., & Du, P. (2020). High flux hemodialysis in elderly patients with chronic kidney failure. World Journal of Clinical Cases, 8(11), 2144–2149. https://doi.org/10.12998/wjcc.v8.i11.2144
Yamamoto, S., Kazama, J. J., Wakamatsu, T., Takahashi, Y., Kaneko, Y., Goto, S., & Narita, I. (2016). Removal of uremic toxins by renal replacement therapies: A review of current progress and future perspectives. Renal Replacement Therapy, 2(43), 1-8. https://doi.org/10.1186/s41100-016-0056-9
Zhao, S., Yan, L., Zhao, Z., Hou, M., & Rong, F. (2019). Laparoscopic hysterectomy in chronic renal failure patients with abnormal uterine bleeding. Minimally Invasive Therapy and Allied Technologies, 28(1), 41–45. https://doi.org/10.1080/13645706.2018.1467459
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Andressa Flores Santos; Regiane Stafim da Cunha; Andrea Emilia Marques Stinghen; Wesley Mauricio de Souza
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.