Auxiliary solar heating system: simulation and control

Authors

DOI:

https://doi.org/10.33448/rsd-v9i3.2730

Keywords:

on/off Control; PI Control; Solar Energy; Modelling.

Abstract

Solar energy has become the most used forms of alternative energy, being a renewable and non-polluting source. As such, solar heating systems have been increasingly used in the residential and industrial sectors. However, in periods with low or no solar luminosity, its efficiency is impaired. Based on this assumption, this work proposes the mathematical modeling of an auxiliary heating system, using solar energy as an alternative source. Three types of configurations are evaluated for the heating system: system I - without solar collector, system II - with solar collector running 24 hours a day, and system III - hybrid system, in which solar collector is activated only during the period in which there is incidence of solar radiation (10am - 5pm). It is proposed the implementation of on/off and PI controllers, in the configurations studied. The results are obtained from the simulation of the mathematical model using the free software Scilab®. The results show that the hybrid system is saving more energy, about 8% of energy when compared to the system I. The PI control is best suited for this application, especially when it is implemented with hybrid system, saving of 60W of energy per day of operation.

References

Cardoso, R. B. & Campos, O. C. (2017). Impacts of climate variables in energy generation on the photovoltaic system of the UNIFEI, in Itabira city. Revista SODEBRAS, 12, 295-299.

Fonseca, J. P. S. M. & Ferrari, E. M. M. & Cardoso, R. B. (2018). Análise dos impactos energéticos e econômicos do programa brasileiro de etiquetagem energética (PBE/Inmetro) em coletores solares térmicos do Brasil. Research, Society and Development, 7(1), 01-17. doi:10.17648/rsd-v7i1.101

Fontalvo, A. & Garcia, J. & Sanjuan, M. & Padilla, R. V. (2014). Automatic control strategies for hybrid solar-fossil fuel power plants, Renewable Energy, 62, 424-431. doi:10.1016/j.renene.2013.07.034

Franco, P. R. V. & Lugli, A. B. & Henriques, J. P. C. (2014) Comparação entre sistemas de controle para fornos industriais. Brazil Automation, 1,1-18.

Gnoatto, E. & Dallacort, R. & Ricieri, R. P. & Silva, S. L.; Ferruzi, Y. (2008). Eficiência de um conjunto fotovoltaico em condições reais de trabalho na região de Cascavel. Acta Sicentiarum Technology, Maringá, 30(2), 215-219. doi:10.4025/actascitechnol.v30i2.5496

Gomes Filho, C. A. (2013). Análise preliminar para estimativa da perda de calor sensível de um fluido homogêneo térmico em um reservatório de geométrica cilíndrica. Trabalho de conclusão de curso. Faculdade de Engenharia (FEG). Universidade Estadual Paulista, Guaratinguetá.

Incropera, F. P. & Dewitt, D. P. & Bergan, T. L. & Lavine, A. S. (2011). Fundamentos de Tranferência de Calor e Massa, 6 ed. Rio de Janeiro: LTC.

Instituto Nacional de Meteorologia. (2018). Acessado em 09 janeiro 2018, em: http://www.inmet.gov.br/portal/.

Kicsiny, R. (2015). Transfer function of solar heating systems for dynamic analysis and control design. Renewable Energy, 77, 64-78. doi: 10.1016/j.renene.2014.12.001

Kicsiny, R. (2018). Black-box model for solar storage tanks based on multiple linear regression. Renewable Energy, 125, 857-865. doi: 10.1016/j.renene.2018.02.037

Kicsiny, R. & Nagy, J. & Szalóki, Cs.(2014). Extended ordinary differential equation models for solar heating systems with pipes. Applied Energy, 129, 166-176. doi:10.1016/j.apenergy.2014.04.108

Kicsiny, R. & Varga, Z. (2012). Real-time state observer design for solar thermal heating systems. Applied Mathematics and Computation, 218, 11558-11568. doi:10.1016/j.amc.2012.05.040

Martins, F. R. & Abreu, S. L. & Pereira, E. B. (2012). Scenarios for solar termal energy application in Brazil. Energy Policy, 48, 640-649. doi: 10.1016/j.enpol.2012.05.082

Medeiros, M.& Nogueira, C. E. C. & Siqueira, J. A. C. & Lawder, J. H. & Souza, S. N. M. & Fracaro, G. P. M. (2013). Optimizing a mixed water heating system (solar and electric) for rural areas. Acta Scientiarum Techonlog, Maringá, 35 (1), 69-74. doi:10.4025/actascitechnol.v35i1.11998

Mekhilef, S. & Saidur, R. & Safari, (2011). A review on solar energy use in industries. Renewable and Sustainable Energy Reviews, 15, 1777-1790. doi: 10.1016/j.rser.2010.12.018

Oliveira, N. M. B. & Damasceno, J. J. R. & Vieira, L. G. M. (2009). Aprimoramento de aquecedores solares de baixo custo. Uberlândia: UFU.

Pereira, E. B & Martins, F. R. & Gonçalves, A. R. & Costa, R. S. & Lima, F. J. L. & Rüther, R. & Abreu, S. L. & Tiepolo, G. M. & Pereira, S. V. & Souza, J. G. (2017). Atlas brasileiro de energia solar. 2.ed. ‐‐ São José dos Campos : INPE.

Silva, R. M. (2015). Energia Solar no Brasil: dos incentivos aos desafios. Brasília: Núcleo de Estudos e Pesquisas/CONLEG/Senado.

Tavares, S. R. & Sousa, N. G. (2018). Sistema de aquecimento solar de água: simulação e análise, Revista Brasileira de Ciência, Tecnologia e Inovação, 4(1), 15-31. doi:10.18554/rbcti.v4i1.3360

Yunus, A. C. & Moura, L. F. M. & Ismail, K. A. R. (2009). Transferência de calor de massa: uma abordagem prática. 3 ed. São Paulo: MCGraw-Hill do Brasil.

Published

10/03/2020

How to Cite

SILVA, S. T.; SOUSA, N. G. Auxiliary solar heating system: simulation and control. Research, Society and Development, [S. l.], v. 9, n. 3, p. e188932730, 2020. DOI: 10.33448/rsd-v9i3.2730. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/2730. Acesso em: 24 sep. 2021.

Issue

Section

Engineerings