Drying kinetics of Eggplant (Solanum Melongena L.) in an oven
DOI:
https://doi.org/10.33448/rsd-v11i4.27319Keywords:
Solanaceae; Mathematical modeling; Water content.Abstract
Eggplant (Solanum melongena L.) is very beneficial to human health, but this fruit has a short shelf life, causing a limitation in its trade as a fresh product, requiring the investigation of processing methods that preserve its properties for longer. time. Therefore, the objective was to study the drying kinetics of eggplant in an oven with air current, at temperatures of 50, 60 and 70 ºC and to adjust mathematical models to the experimental data. Drying kinetics were determined by weighing the samples at regular intervals until the mass remained constant. With the drying data, the values of the water content ratio were determined and, later, the data were applied to different mathematical models. The Wang and Sing model was the one that best represented the experimental data for the three chosen temperatures, presenting the highest values of coefficient of determination and the lowest values of mean square and chi-square deviation. Through the drying curves, it was observed that the higher the temperature, the shorter the process time, and the dry sample at a temperature of 70 ºC was the one that presented the best result, with a drying time of 270 min and 7.92 % moisture on a wet basis in the final sample. Therefore, the use of dried eggplant under these conditions becomes relevant, since it can be used later in the formulation of new food products, with a longer shelf life and with preserved nutritional properties.
References
Alves, M. J. D. S. (2016). Caracterização e conservação com recobrimento comestível em hortaliças.
Blando, F., Calabriso, N., Berland, H., Maiorano, G., Gerardi, C., Carluccio, M. A., & Andersen, Ø. M. (2018). Radical scavenging and anti-inflammatory activities of representative anthocyanin groupings from pigment-rich fruits and vegetables. International Journal of Molecular Sciences, 19(1), 169.
Corrêa, P. C., Oliveira, G. H. H., Botelho, F. M., Goneli, A. L. D., & Carvalho, F. M. (2010). Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, 57(5), 595-601.
de Sousa, A. P. M., Campos, A. R. N., Gomes, J. P., Costa, J. D., de Macedo, A. D. B., & de Santana, R. A. C. (2021). Cinética de secagem de resíduos de jaca (Artocarpus heterophyllus Lam.). Research, Society and Development, 10(2), e31510212610-e31510212610.
Embrapa. Berinjela (Solanum melongena L.). Embrapa-CNPH, 2007. Disponível em: https://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Beringela/Beringela_Solanum_melongena_L/coeficientestecnicos.html. Acesso em 01 de setembro de 2021.
Ertekin, C., & Yaldiz, O. S. M. A. N. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of food engineering, 63(3), 349-359.
Hendreson, S. M., & Pabis, S. (1961). Grain drying theory. I. Temperature effect on drying coefficients. Journal of Agricultural Engineering Research, 6, 169-174.
Henderson, S. M. (1974). Progress in developing the thin layer drying equation. Transactions of the ASAE, 17(6), 1167-1168.
Kaveh, M., Amiri Chayjan, R., & Nikbakht, A. M. (2017). Mass transfer characteristics of eggplant slices during length of continuous band dryer. Heat and Mass Transfer, 53(6), 2045-2059.
Llavata, B., García-Pérez, J. V., Simal, S., & Cárcel, J. A. (2020). Innovative pre-treatments to enhance food drying: A current review. Current Opinion in Food Science, 35, 20-26.
Modolo, V. A., & Costa, C. P. D. (2004). Production of paulista gherkin using trellis net support. Scientia agricola, 61, 43-46.
Moradi, M., Azizi, S., Niakousari, M., Kamgar, S., & Khaneghah, A. M. (2020). Drying of green bell pepper slices using an IR-assisted Spouted Bed Dryer: An assessment of drying kinetics and energy consumption. Innovative Food Science & Emerging Technologies, 60, 102280.
Moreira, S. R.; Trani, P. E.; Tivelli, S. W. Berinjela. Instituto Agronômico, 2006. Disponível em: www.iac.sp.gov.br/tecnologias/berinjela/berinjela.htm. Acesso em 01 de setembro de 2021.
Morris, W. L., & Taylor, M. A. (2017). The solanaceous vegetable crops: Potato, tomato, pepper, and eggplant.
Niño-Medina, G. U. I. L. L. E. R. M. O., Urías-Orona, V. A. N. I. A., Muy-Rangel, M. D., & Heredia, J. B. (2017). Structure and content of phenolics in eggplant (Solanum melongena)-a review. South African Journal of Botany, 111, 161-169.
Overhults, D. G., White, G. M., Hamilton, H. E., & Ross, I. J. (1973). Drying soybeans with heated air. Transactions of the ASAE, 16(1), 112.
Özdemir, M., & Devres, Y. O. (1999). The thin layer drying characteristics of hazelnuts during roasting. Journal of Food Engineering, 42(4), 225-233.
Perez, P. M. P., & Germani, R. (2004). Farinha mista de trigo e berinjela: características físicas e químicas. Embrapa Agroindústria de Alimentos-Artigo em periódico indexado (ALICE).
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica [recurso eletrônico] (1a edição). NTE/UFSM.
Saini, D. K., & Kaushik, P. (2019). Visiting eggplant from a biotechnological perspective: A review. Scientia Horticulturae, 253, 327-340.
Souza, D. G., Resende, O., Moura, L. C. D., Ferreira, W. N., & Andrade, J. W. D. S. (2019). Drying kinetics of the sliced pulp of biofortified sweet potato (Ipomoea batatas L.). Engenharia Agrícola, 39, 176-181.
Statsoft, Inc. STATISTICA, Versão 8. AStA, v. 91, p. 339–341, 2007
Toğrul, İ. T., & Pehlivan, D. (2002). Mathematical modelling of solar drying of apricots in thin layers. Journal of Food Engineering, 55(3), 209-216.
Verma, L. R., Bucklin, R. A., Endan, J. B., & Wratten, F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28(1), 296-0301.
Wang, C. Y., & Singh, R. P. (1978). ASAE Paper 78-6505, ASAE, St. Joseph, MI, 49085.
Zhang, L., Wang, X., Yu, L., & Zhang, H. (2012). Drying characteristics and color changes of infrared drying eggplant. Transactions of the Chinese Society of Agricultural Engineering, 28(1), 291-296.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Jessica Raiane Barbosa da Silva; Ana Regina Nascimento Campos; Renato Alexandre Costa de Santana; Danilo Lima Dantas; Antonio Daniel Buriti de Macedo; Ana Paula Moisés de Sousa; Ayanne Basílio Malaquias; Tiago da Nóbrega Albuquerque; Gracimário Bezerra da Silva; Aureliano Xavier dos Santos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.