Production of biosurfactant by Cunninghamella elegans UCP 0542 using food industry waste in 3 L flasks and evaluation of orbital agitation effect
DOI:
https://doi.org/10.33448/rsd-v11i4.27438Keywords:
Biotensoactive; Mucoralean fungus; Renewable substrates; Surface tension reduction; Emulsifying properties; Dispersing action.Abstract
In current study, the production of biosurfactant by Cunninghamella elegans UCP 0542 in food industry waste-based medium was investigated as a biotechnological strategy to reduce the bioprocess costs. Cultivation of the Mucoralean fungus was performed in 3 L Fernbach flasks containing 1.5 L of effective volume of medium composed by 2% instant noodle waste, 2% corn steep liquor and 0.5% post-frying soybean oil, with carbon/nitrogen ratio of 30:1. Fermentations were carried out during 96 h and 28ºC, at 150, 180 and 200 rpm, in order to evaluate the influence of orbital agitation in biosurfactant production. The properties of surface tension reduction, emulsification and dispersion were investigated. According to the obtained results, C. elegans produced biosurfactant in sustainable medium, reducing the surface tension from 71 to 27.5 mN/m after cultivation at 200 rpm. Biotensoactive produced in this condition formed stable emulsions with engine oil and burnt engine oil (emulsification index of 100%) and showed 48.39 cm² of oil dispersion area (ODA) with burnt engine oil. The biomolecule was isolated by different methodologies, reaching a maximum yield of 2.1 g/L with ethanol. The biosurfactant produced by C. elegans exhibited excellent potential for application in bioremediation processes considering its promising properties as a surface tension reducing agent, emulsifying and dispersing action of petroderivatives.
References
Andrade, R. F. S., Silva, T. A. L.; Ribeaux, D. R., Rodriguez, D. M., Souza, A. F., Lima, M. A. B., Lima, R. A., Silva, C. A. A., & Campos-Takaki, G. M. (2018). Promising Biosurfactant Produced by Cunninghamella echinulata UCP 1299 Using renewable resources and its application in cotton fabric cleaning process. Advances in Materials Science and Engineering. 10.1155/2018/1624573.
Ashour, A., El-Sharkawy, S., Amer, M., Marzouk, A., Zaki, A., Kishikawa, A., Ohzono, M., Kondo, R., & Shimizu, K. (2014). Production of citric acid from corncobs with its biological evaluation. Journal Of Cosmetics, Dermatological Sciences and Applications. 10.4236/jcdsa.2014.43020.
Bezerra, K. G. O., & Sarubbo, L. A. (2021). Cosmeceutical applications of biosurfactants. Biosurfactants for a Sustainable Future. 10.1002/9781119671022.ch19.
Bueno, S. M., Navarro, A., & Garcia-Cruz, C. H. (2010). Estudo da produção de biossurfactante em caldo de fermentação. Química Nova.
Cândido, T. R. da S., Mendonça, R. de S., Lins, U. M. de B. L., Souza, A. F. de, Montero-Rodriguez, D., Campos-Takaki, G. M., de, & Andrade, R. F. S. (2022). Production of biosurfactants by Mucoralean fungi isolated from Caatinga bioma soil using industrial waste as renewable substrates. Research, Society and Development, 10.33448/rsd-v11i2.25332.
Cooper, D. G., & Goldenberg, B. G. (1987). Surface active agents from two Bacillus species. Applied and Environmental Microbiology. 10.1128/aem.53.2.224-229.1987.
Das, A. J., & Kumar, R. (2018). Utilization of agroindustrial waste for biosurfactant production under submerged fermentation and its application in oil recovery from sand matrix. Bioresource Technology. 10.1016/j.biortech.2018.03.093.
Durval, I. J. B., Silva, I. A., & Sarubbo, L. A. (2021). Application of microbial biosurfactants in the food industry. Environmental And Microbial Biotechnology. 10.1007/978-981-15-6607-31.
Fonseca, T. C. S., Luna D. C. B., Oliveira, J. F., Banhara, V. F., Paiva, J. B., Morais e Souza, L. V., Batista e Silva, M. C. L., Sales e Silva, L. G., Gomes Filho, A. J., Campos-Takaki, G. M., & Alves da Silva, C. A. (2018). Amylase production by Aspergillus tamarii (UCP 1261) through submerged fermentation using alternative media containing agro-industrial residues. Exploring Microorganisms: Recent Advances in Applied Microbiology.
Hisham, N. H. M. B., Ibrahim, M. F., & Ramli, N., Abd-Aziz, S. (2019). Production of Biosurfactant Produced from Used Cooking Oil by Bacillus sp. HIP3 for Heavy Metals Removal. Molecules. 10.3390/molecules24142617.
Kuyukina, M. S., Ivshina, I. B., Philp, J. C., Christofi, N., Dunbar, S. A., & Ritchkova, M. I. (2001). Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods. 10.1016/s0167-7012(01)00259-7.
Makkar, R. S., Cameotra, S. S., & Banat, I. M. (2011). Advances in utilization of renewable substrates for biosurfactant production. Amb Express. 10.1186/2191-0855-1-5.
Manocha, M. S., San-Blas, G., & Centeno, S. (1980). Lipid Composition of Paracoccidioides brasiliensis: possible correlation with virulence of different strains. Microbiology. 10.1099/00221287-117-1-147.
Marcelino, P. R. F., Gonçalves, F., Jimenez, I. M., Carneiro, B. C., Santos, B. B., & Silva, S. S. (2020). Sustainable Production of Biosurfactants and Their Applications. Lignocellulosic Biorefining Technologies. 10.1002/9781119568858.ch8.
Marques, N. S. A., Silva, T. A. L., Andrade, R. F. S., Branco Júnior, J. F., Okada, K., & Takaki, G. M. C. (2019). Lipopeptide biosurfactant produced by Mucor circinelloides UCP/WFCC 0001 applied in the removal of crude oil and engine oil from soil. Acta Scientiarum.
Melanouri, E. M., Dedousi, M., & Diamantopoulou, P. (2022). Cultivating Pleurotus ostreatus and Pleurotus eryngii mushroom strains on agro-industrial residues in solid-state fermentation. Part II: effect on productivity and quality of carposomes. Carbon Resources Conversion. 10.1016/j.crcon.2021.12.005.
Merino, C. O., Bayas-Morejon,L. F., Changoluisa, M., Lema, M. P., Gomez, C., Verdezoto, L., Moreno, I., Merino, M. C., Tigre, R. A., & Donato, W. (2019). Biotransformation of fruti Horticultural Agro-Industrial Residues Using Efficient Microorganisms (EM) in Riobamba (Ecuador). Journal of Engineering and Applied Sciences.
Mnif, I., & Ghribi, D. (2015). Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers. 10.1002/bip.22630.
Morikawa, M., Daido, H., Takao, T., Murata, S., Shimonishi, Y., & Imanaka, T. (1993). A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. Journal of Bacteriology. 10.1128/jb.175.20.6459-6466.1993.
Nogueira, I. B., Rodríguez, D. M., Andrade, R. F. S., Lins, A. B., Bione, A. P., Silva, I. G. S., Franco, L. O., & Campos-Takaki, G. M. (2020). Bioconversion of agroindustrial waste in the production of bioemulsifier by Stenotrophomonas maltophilia UCP 1601 and Application in Bioremediation Process. International Journal of Chemical Engineering. 10.1155/2020/9434059.
Pacwa-Płociniczak, M., Płaza, G. A., Piotrowska-Seget, Z., & Cameotra, S. S. (2011). Environmental applications of biosurfactants: recent advances. International Journal of Molecular Sciences. 10.3390/ijms12010633.
Pele, M. A., Ribeaux, D. R., Vieira, E. R., Souza, A. F., Luna, M. A. C., Rodríguez, D. M., Andrade, R F. S., Alviano, D. S., Alviano, C. S., & Barreto-Bergter, E. (2019). Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil from marine soil. Electronic Journal of Biotechnology. 10.1016/j.ejbt.2018.12.003.
Rodrigues, T. V. D., Amore, T. D., Teixeira, E. C., & Burkert, J. F. M. (2019). Carotenoid production by Rhodotorula mucilaginosa in batch and fed-batch fermentation using agroindustrial Byproducts. Food Technology and Biotechnology. 10.17113/ftb.57.03.19.6068.
Romo-Buchelly, J., Rodríguez-Torres, M., & Orozco-Sánchez, F. (2019). Biotechnological valorization of agroindustrial and household wastes for lactic acid production. Revista Colombiana de Biotecnología. 10.15446/rev.colomb.biote.v21n1.69284.
Rubio-Ribeaux, D., Andrade, R. F. S., Silva, G. S., Holanda, R. A., Pele, M. A., Nunes, P., Vilar Junior, J. C., Resende-Stoianoff, M. A., & Campos-Takaki, G., M. (2017). Promising biosurfactant produced by a new Candida tropicalis UCP 1613 strain using substrates from renewable-resources. African Journal of Microbiology Research. 10.5897/ajmr2017.8486.
Sant’anna, M. C. S., Corrêa Lopes, D. F., Carvalho, J. B. R., & Silva, G. F. (2012). Caracterização de briquetes obtidos com resíduos da agroindústria. Revista Brasileira de Produtos Agroindustriais.
Sarafin, Y., Donio, M. B. S., Velmurugan, S., Michaelbabu, M., & Citarasu, T. (2014). Kocuria marina BS-15 a biosurfactant producing halophilic bacteria isolated from solar salt works in India. Saudi Journal of Biological Sciences. 10.1016/j.sjbs.2014.01.001.
Silva J. F., Silva, L. A. R., Barbosa, M. R., Houllou, L. M., & Malafaia, C. B. (2020). Bioemulsifier produced by Yarrowia lipolytica using residual glycerol as a carbon source. Journal of Environmental Analysis and Progress. 10.24221/jeap.5.1.2020.2700.031-037.
Silva, I. A., Almeida, F. C. G., Souza, T. C., Bezerra, K. G. O., Durval, I. J. B., Converti, A., & Sarubbo, L. A. (2022). Oil spills: impacts and perspectives of treatment technologies with focus on the use of green surfactants. Environmental Monitoring and Assessment. 10.1007/s10661-022-09813-z.
Silva, N. A., Luna, M., Santiago, A., Franco, L., Silva, G., Souza, P., Okada, K., Albuquerque, C., Silva, C., & Campos-Takaki, G. (2014). Biosurfactant and bioemulsifier produced by a promising Cunninghamella echinulata Isolated from Caatinga Soil in the Northeast of Brazil. International Journal of Molecular Sciences. 10.3390/ijms150915377.
Sun, X., Wu, H., Zhao, G., Li, Z., Wu, X., Liu, H., & Zheng, Z. (2018). Morphological regulation of Aspergillus niger to improve citric acid production by chsC gene silencing. Bioprocess And Biosystems Engineering. 10.1007/s00449-018-1932-1.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Alexandre D’Lamare Maia de Medeiros; Cláudio José Galdino da Silva Junior; Adriana Ferreira de Souza; Davi de Lima Cavantanti ; Dayana Montero Rodriguez; Carlos Alberto Alves da Silva; Rosileide Fontenele da Silva Andrade
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.