Evaluation of the fungus Penicillium sclerotiorum UCP 1040 in the production of biosurfactant using post-frying oil and corn steep liquor
DOI:
https://doi.org/10.33448/rsd-v11i5.27502Keywords:
Microbial surfactant; Agro-industrial waste; Factorial design; Surface tension; Oil dispersion area.Abstract
The present work evaluated the biotechnological potential of the fungus Penicillium sclerotiorum UCP 1040, isolated from the soil of the State of Pernambuco, for the production of biosurfactant using agro-industrial waste as alternative sources of carbon and nitrogen. Fermentations were carried out for 144 h, 28ºC and 150 rpm, in media consisting of different concentrations of post-frying oil (PFO) and corn steep liquor (CSL), according to a 22 factorial design. The effects of substrates on surfactant production were evaluated through statistical analysis, using surface tension as response variable. The emulsifying and dispersing properties of biosurfactant were investigated by emulsification index (EI24) and dispersion test, respectively. The results obtained showed that P. sclerotiorum was able to produce a surfactant compound in the presence of renewable substrates, with the greatest reduction in surface tension (from 72.0 to 42.77 mN/m) in condition 2 of the design (medium consisting of 3% PFO and 5% CSL). Although the biosurfactant produced in this condition did not show good emulsifying properties, it exhibited excellent dispersing properties, with oil dispersion area (ODA) of 44.18 cm2. The Pareto diagram verified the significant influence of the interaction of wastes in the production of biosurfactant, constituting alternative and low-cost substrates, which make the bioprocess economical and, therefore, attractive for different industries.
References
Andrade, R. F., Silva, T. A., Ribeaux, D. R., Rodriguez, D. M., Souza, A. F., Lima, M. A., ... & Campos-Takaki, G. M. (2018). Promising biosurfactant produced by Cunninghamella echinulata UCP 1299 using renewable resources and its application in cotton fabric cleaning process. Advances in Materials Science and Engineering, 2018.
Behring, J. L., Lucas, M., Machado, C., & Barcellos, I. V. (2004). Adaptação no método do peso da gota para determinação da tensão superficial: um método simplificado para a quantificação da cmc de surfactantes no ensino da química. Quim. Nova, 27(3), 492-495. https://doi.org/10.1590/S0100-40422004000300021
Cândido, T. R. S., Mendonça, R. S., Lins, U. M. B. L., Souza, A. F., Rodrigues, D. M., Campos-Takaki, G. M., & Andrade, R. F. S. (2022). Production of biosurfactants by Mucoralean fungi isolated from Caatinga bioma soil using industrial waste as renewable substrates. Society and Development. 11(2) https://doi.org/10.33448/rsd-v11i2.25332
Cicatiello, P., Stanzione, I., Dardano, P., De Stefano, L., Birolo, L., De Chiaro, A., ... & Giardina, P. (2019). Characterization of a surface-active protein extracted from a marine strain of Penicillium chrysogenum. International journal of molecular sciences, 20(13), 3242.
Cooper D. G., & Goldenberg, B. G (1987). Surface-active agents from two Bacillus species. Applied and Environmental Microbiology, 53 (2), 224-229.
Felipe, L. O., & Dias, S. C. (2017). Surfactantes sintéticos e Biossurfactantes: Vantagens e desvantagens. Química. nova escola. – São Paulo-SP, BR, 39(3), 228-236. http://dx.doi.org/10.21577/0104-8899.20160079
Ferreira, I. N. S., Rodríguez, D. M., Campos-Takaki, G. M., & da Silva Andrade, R. F. (2020). Biosurfactant and bioemulsifier as promising molecules produced by Mucor hiemalis isolated from Caatinga soil. Electronic Journal of Biotechnology, 47, 51-58.
Fonseca, T. C. S., de Souza, A. F., dos Santos, P. N., da Silva, P. H., Rodríguez, D. M., Costa, L. O., & Campos-Takaki, G. M. (2022). Sustainable production of biosurfactant by Issatchenkia orientalis UCP 1603 using renewable substrates. Research, Society and Development, 11(4), e16111427174-e16111427174.
Gautam, G., Mishra, V., Verma, P., Pandey, A. K., & Negi, S. (2014). A cost effective strategy for production of bio-surfactant from locally isolated Penicillium chrysogenum SNP5 and its applications. Journal of Bioprocessing & Biotechniques, 4(6), 1.
Lima, R. A., Andrade, R. F., RodrÃguez, D. M., Araujo, H. W., Santos, V. P., & Campos-Takaki, G. M. (2017). Production and characterization of biosurfactant isolated from Candida glabrata using renewable substrates. African journal of microbiology research, 11(6), 237-244.
Luna-Velasco, M. A., Esparza-García, F., Cañízares-Villanueva, R. O., & Rodríguez-Vázquez, R. (2007). Production and properties of a bioemulsifier synthesized by phenanthrene-degrading Penicillium sp. Process Biochemistry, 42(3), 310-314.
Marques, N. S. A.A., de Lima, T. A., da Silva Andrade, R. F., Júnior, J. F. B., Okada, K., & Takaki, G. M. C. (2019). Lipopeptide biosurfactant produced by Mucor circinelloides UCP/WFCC 0001 applied in the removal of crude oil and engine oil from soil. Acta Scientiarum. Technology, 41, e38986-e38986.
Mendonça, R. S., Sá, A. V. P., Rosendo, L. A., dos Santos, R. A., do Amaral Marques, N. S. A., Souza, A. F., . . . & de Campos Takaki, G. M. (2021). Produção de biossurfactante e lipídeos por uma nova cepa de Absidia cylindrospora UCP 1301 isolada do solo da Caatinga usando subprodutos agroindustriais de baixo custo. Brazilian Journal of Development, 7(1), 8300-8313.
Nitscke, M., & Pastore, G. (2002). Biossurfactantes: propriedades e aplicações. Química nova. 25(5), 772-774. https://doi.org/10.1590/S0100-40422002000500013
Pele, M. A., Ribeaux, D. R., Vieira, E. R., Souza, A. F., Luna, M. A., Rodríguez, D. M., ... & Campos-Takaki, G. M. (2019). Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil from marine soil. Electronic Journal of Biotechnology, 38, 40-48.
Sanches, M. A., Luzeiro, I. G., Cortez, A. C. A., De Sousa, E. S., Albuquerque, P. M., Chopra, H. K., & De Souza, J. V. B. (2021). Production of biosurfactants
by Ascomicetes. International Journal of Microbiology. doi.org/10.1155/2021/6669263
Santiago, M. G., Lins, U. M. D. B. L., de Campos Takaki, G. M., da Costa Filho, L. O., & da Silva Andrade, R. F. (2021). Produção de biossurfactante por Mucor circinelloides UCP 0005 usando novo meio de cultura formulado com cascas de jatobá (Hymenaea courbaril L.) e milhocina. Brazilian Journal of Development, 7(5), 51292-51304.
Santos, S. F. M., Melo, A. L. M., Lima, A. O., Pereira, L. M. S., Santos, F. A., Medeiros, N. M., & Silva, M. G. B. (2018). Avaliação da produção de biossurfactante a partir de diferentes fontes de carbono por Candida guilliermondii. Revista saúde e Ciência online, 7(2), 413-425, https://doi.org/10.35572/rsc.v7i2.126
Santos, S. C. dos. (2022). Biossurfactantes: potenciais agentes biorremediadores. Cadernos De Prospecção, 12(5), 1531. https://doi.org/10.9771/cp.v12i5.33191
Sena, H. H. (2014). Produção de biossurfactante por fungos isolados do solo Amazônico. Dissertação (mestrado). Curso de Ciências farmacêutica. Universidade Federal do Amazonas, https://tede.ufam.edu.br/handle/tede/4706
Sperb, J. G. D., Costa, T. M., Vaz, D. A., Valle, J. A. B., Valle, R. C. S. C., Tavares, L. B. B. (2015). Avaliação qualitativa da produção de lipases e biossurfactantes por fungos isolados de resíduos oleosos. Engevista, 17(3), 385-397. https://doi.org/10.22409/engevista.v17i3
Rahman, P. K., Mayat, A., Harvey, J. G. H., Randhawa, K. S., Relph, L. E., & Armstrong, M. C. (2019). Biosurfactants and bioemulsifiers from marine algae. In The Role of Microalgae in Wastewater Treatment (pp. 169-188). Springer, Singapore.
Truan, L., Marques, N., Souza, A., Rubio-Ribeaux, D., Cine, A., Andrade, R., ... & Takaki, G. (2020). Sustainable biotransformation of barley and milk whey for biosufactant production by Penicillium sclerotiorum UCP 1361. Chemical Engineering Transactions, 79, 259-264.
Uzoigwe, C., Burgess, J. G., Ennis, C. J., & Rahman, P. K. (2015). Bioemulsifiers are not biosurfactants and require different screening approaches. Frontiers in microbiology, 6, 245.
Velioglu, Z., & Urek, R.O. (2015). “Biosurfactant production by Pleurotus ostreatus in submerged and solid-state fermentation systems”, Turkish Journal of Biology, 39(1), 160-166. https://doi.org/10.3906/biy-1406-44
Wei, Y., Chou, C. & Chang, J. (2005). Rhamnolipid production by indigenous Pseudomonas aeruginosa originating from petrochemical wastewater. Biochemical Engineering Journal. 27, 146-54. http://dx.doi.org/10.1016/j.bej.2005.08.028
Youssef, N. H., Duncan, K. E., Nagle, D. P., Savage, K. N., Knapp, R. M., & McInerney, M. J. (2004). Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal of microbiological methods, 56(3), 339–347. https://doi.org/10.1016/j.mimet.2003.11.001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Elizandro Lima Freitas; Sonally de Oliveira Lima; Dayana Montero-Rodríguez; Rosileide Fontenele da Silva Andrade; Galba Maria de Campos-Takaki; Hélvia Walewska Casullo de Araújo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.