Data analyses of fatigue tests by extensometry in hip prosthesis of the Co-28Cr-6Mo alloy
DOI:
https://doi.org/10.33448/rsd-v11i4.27854Keywords:
Hip Prosthesis; ASTM F75; Fatigue Tests; Extensometry; ABNT NBR 7206-6: 2013 standard.Abstract
ANVISA made changes to its regulations, setting new values for the fatigue tests, increasing the number of cycles that prostheses must endure without presenting failures. The standard used is ABNT NBR 7206-6:2013, in which all prostheses being commercialized must be tested in the new parameters. In this article, studies were conducted based on the requirement to revalidate the Co-26Cr-6Mo metallic alloy (ASTM F75). Microstructural characterizations (Optical and Scanning Electron Microscopies), and fatigue tests were carried out, with the aim of obtaining the mechanical behavior and features of the materials used in hip prostheses and comparing them with the standard. The grain size and inclusion contents were found to be controlled. Likewise, the prosthesis has withstand 10,000,000 cycles, and has not shown cracks, nor plastic deformations, enabling the biomedical use of this alloy according to the new regulations. Tensile test and liquid penetrant inspection were also carried out to take the parameters of the related physical properties. In the analysis with strain gauges, it was possible to detect the purely elastic deformation that occurred with the application of the load during fatigue tests, resulting in a slight variation of stress in the data acquisition system.
References
Ateshian, G. A. (1994). A stereophotogrammetric method for determining in situ contact areas in diarthrodial joints, and a comparison with other methods. Journal of Biomechanics, 27(1), 111–124. https://doi.org/10.1016/0021-9290(94)90038-8
Bezerra, E. (2017). Avaliação de não conformidades de próteses de quadril fabricadas com ligas de titânio e aço inox. Matéria (Rio de Janeiro), 22(1). https://doi.org/10.1590/s1517-707620170001.0114
Chen, Q., & Thouas, G. A. (2015). Metallic implant biomaterials. Materials Science & Engineering. R, Reports: A Review Journal, 87, 1–57. https://doi.org/10.1016/j.mser.2014.10.001
Costa, L. dos S. (2021). Hip arthroplasty: Effective rehabilitation protocols. Research, Society and Development, 10(4), e45510414370. https://doi.org/10.33448/rsd-v10i4.14370
Dias, D. F., & Gonçalves, S. J. da C. (2021). Falhas em implantes de quadril. Research, Society and Development, 10(11), e357101119668. https://doi.org/10.33448/rsd-v10i11.19668
Geetha, M. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress in Materials Science, 54(3), 397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004
Guarniero, R. (2010). Displasia do desenvolvimento do quadril: atualização. Revista Brasileira de Ortopedia, 45(2), 116–121. https://doi.org/10.1590/s0102-36162010000200002
Guesser, W. L. (2009). Propriedades mecânicas dos ferro fundidos, Issuu. https://issuu.com/editorablucher/docs/issuu_ferros_fundidos_isbn9788521205012.
Hanawa, T. (2002). Evaluation techniques of metallic biomaterials in vitro. Science and Technology of Advanced Materials, 3(4), 289–295. https://doi.org/10.1016/s1468-6996(02)00028-1
Hanawa, T. (2004). Metal ion release from metal implants. Materials Science & Engineering. C, Materials for Biological Applications, 24(6–8), 745–752. https://doi.org/10.1016/j.msec.2004.08.018
Hodge, W. A. (1986). Contact pressures in the human hip joint measured in vivo. Proceedings of the National Academy of Sciences of the United States of America, 83(9), 2879–2883. https://doi.org/10.1073/pnas.83.9.2879
Manivasagam, G. (2010). Biomedical Implants: Corrosion and its Prevention - A Review. Corrosion Science, 2, 40–54.
Matos, D. B. (2020). Instrumentação de um sistema de sensoriamento: montagem de uma plataforma protótipo para a aquisição do empuxo de propulsores eletromecânicos / instrumentation of a sensing system: assembly of a prototype platform for the purchase of electromechanical propellers. Brazilian Journal of Development, 6(10), 78039–78050. https://doi.org/10.34117/bjdv6n10-290
McKee, G. K., & Watson-Farrar, J. (1966). Replacement of arthritic hips by the McKee-Farrar prosthesis. The Journal of Bone and Joint Surgery. British Volume, 48(2), 245–259. https://pubmed.ncbi.nlm.nih.gov/5937593/
Niinomi, M. (2007). Fatigue characteristics of metallic biomaterials. International Journal of Fatigue, 29(6), 992–1000. https://doi.org/10.1016/j.ijfatigue.2006.09.021
Niinomi, M. (2012). Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 8(11), 3888–3903. https://doi.org/10.1016/j.actbio.2012.06.037
Paul, J. P. (1976). Force actions transmitted by joints in the human body. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character. Royal Society (Great Britain), 192(1107), 163–172. https://doi.org/10.1098/rspb.1976.0004
Savilahti, S. (1997). Survival of Lubinus straight (IP) and curved (SP) total hip prostheses in 543 patients after 4-13 years. Archives of Orthopaedic and Trauma Surgery, 116(1–2), 10–13. https://doi.org/10.1007/bf00434092
Silva, C. G. I. da, & Gemelli, E. (2020). Influência da corrosão e de tensões cíclicas alternadas na vida em fadiga dos ferros fundidos nodulares das classes FE 50010 e FE 50007. Matéria (Rio de Janeiro), 25(2). https://doi.org/10.1590/s1517-707620200002.1024
Silva Junior, W. C. (2021). Obtaining the predicted number of cycles of femoral prosthesis manufactured with ASTM F138 and ASTM F75 aloys, applying the method of finite element. Journal of Physics. Conference Series, 1730(1), 012026. https://doi.org/10.1088/1742-6596/1730/1/012026
Souza, C. M. P., & Silva Junior, W. C. (2019). Comparação de desempenho da prótese de quadril fabricas nos materiais ASTM F75, F136 e F138. https://doi.org/10.5281/ZENODO.3460918
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Caique Movio Pereira de Souza; Raul Gaspari Santos ; Renato Chaves Souza; Vanderlei Araujo Militão ; Isaias Gouveia Silva; Vanessa Seriacopi; Wilson Carlos da Silva Junior
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.