Biotechnology: use of available carbon sources on the planet to generate alternatives energy

Authors

DOI:

https://doi.org/10.33448/rsd-v11i16.27904

Keywords:

Bioethanol; Cellobiohydrolase; Cellulose; Genetic engineering; Yeast.

Abstract

Biotechnology has been an essential tool in the search for solutions and in the optimization of bioprocesses associated with issues of human, plant, animal, energy and also the balance of ecosystems on planet Earth. The objective of this research was to present an unconventional substrate (cellulose), in abundance on the planet, to be used as a substitute source of carbon and energy for biotechnology processes, with the possibility of increasing industrial production of biomass and energy. As basis for the research, an extensive literature review and quantitative and qualitative analyzes were carried out. Genetic Engineering techniques were used to enable the yeast Saccharomyces cerevisiae for partial cellulose degradation, through the use of genetic transformation methods to insert a plasmid carrying the cellobiohydrolase cDNA. It was found that the recombinant and biologically active cellobiohydrolase protein was expressed and excreted in haploid and diploid laboratory yeast strains. The analyzes allowed the visualization of cellulolysis halos around colonies of recombinant strains grown in solid YPD medium with 1% microgranular cellulose. The recombinant clones derived from the haploid lineage yielded in average of 1.70 mg ART/mL, while recombinant clones derived from the diploid lineage produced in average of 2.05 mg ART/mL.

References

Abreu, J. A. S., Rovida, A. F. S. & Pamphile, J. A. (2015). Fungos de Interesse: Aplicações Biotecnológicas. Uningá Review – 21(1): 55-9.

Albergaria, H., & Arneborg, N. (2016). Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: role of physiological fitness and microbial interactions. Applied microbiology and biotechnology, 100(5), 2035-2046.

Andlar, M., Rezić, T., Marđetko, N., Kracher, D., Ludwig, R., & Šantek, B. (2018). Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Engineering in Life Sciences, 18(11), 768-778.

Araújo, E. F., Barros, E. G., Caldas, R. A., & Silva, D. O. (1983). Beta-glucosidase activity of a thermophilic cellulolytic fungus, Humicola sp. Biotechnology letters, 5(11), 781-784.

Azevedo, J. D., & Pizzirani-Kleiner, A. A. (2002). Melhoramento de fungos de importância na agricultura. Melo, IS de et al. (Eds). Recursos genéticos e melhoramento-microrganismos. Jaguariúna: Embrapa Meio Ambiente, 323-355.

Azevedo, M. O., Felipe, M.S.S., Astolfi-Filho, S. & Radford, A. (1990). Cloning sequencing and homologies of the cbh I (exoglucanase) gene of Humicola grisea var. thermoidea. J. Genet. Microbiol., 136: 2569-76.

Barros, R. N., Santos, M. D. S. M., Cardoso, C. A. L., & Batistote, M. (2019). A utilização de resíduos agroindustriais para produção de bioetanol. Revista Gestão & Sustentabilidade Ambiental, 8(1), 31-43.

Basso, L. C., De Amorim, H. V., De Oliveira, A. J., & Lopes, M. L. (2008). Yeast selection for fuel ethanol production in Brazil. FEMS Yeast research, 8(7), 1155-1163.

Basso, L. C., Basso, T. O., & Rocha, S. N. (2011). Ethanol production in Brazil: the industrial process and its impact on yeast fermentation. Biofuel production-recent developments and prospects, 1530, 85-100.

Benoliel, B., Poças-Fonseca, M. J., Torres, F. A. G., & de Moraes, L. M. P. (2010). Expression of a glucose-tolerant β-glucosidase from Humicola grisea var. thermoidea in Saccharomyces cerevisiae. Applied biochemistry and biotechnology, 160(7), 2036-2044.

Bommarius, A. S., Katona, A., Cheben, S. E., Patel, A. S., Ragauskas, A. J., Knudson, K., & Pu, Y. (2008). Cellulase kinetics as a function of cellulose pretreatment. Metabolic engineering, 10(6), 370-381.

Boyer, H. W., & Roulland-Dussoix, D. (1969). A complementation analysis of the restriction and modification of DNA in Escherichia coli. Journal of molecular biology, 41(3), 459-472.

Brasil. Ministério de Minas e Energia. (2007). Empresa de Pesquisa Energética. Balanço Energético Nacional 2007: Ano base 2006. Relatório final/Ministério de Minas e Energia. Empresa de Pesquisa Energética. EPE, p.192.

Brizzio, S., Turchetti, B., De Garcia, V., Libkind, D., Buzzini, P., & Van Broock, M. (2007). Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Canadian Journal of Microbiology, 53(4), 519-525.

Brown, L. R. (1968). World food problems. In: Mateles RI, Tannenbaum SR (eds) Single-Cell Protein. I. MIT Press, Cambridge, MA, p 11.

Buckeridge, M. S. (2008). Rotas para o etanol celulósico em um cenário de mudanças climáticas. Opiniões, Ribeirão Preto, 62-64.

Candeias, J.A.N. (1991). A engenharia genética. Rev. Saúde pública, 25: 3-10.

Castro, A. M. D., & Pereira Jr, N. (2010). Produção, propriedades e aplicação de celulases na hidrólise de resíduos agroindustriais. Química Nova, 33(1), 181-188.

Chaves, V. M. G., Silva, D. O., Brune, W., & Moreira, M. A. (1989). Characterization of a thermophilic and cellulolytic Humicola sp isolated from compost. Rev. microbiol, 470-6.

Cheng, C., Tsukagoshi, N., & Udaka, S. (1990). Nucleotide sequence of the cellobiohydrolase gene from Trichoderma viride. Nucleic Acids Research, 18(18), 5559.

Chi, Z., Chi, Z., Zhang, T., Liu, G., & Yue, L. (2009). Inulinase-expressing microorganisms and applications of inulinases. Applied Microbiology and Biotechnology, 82(2), 211-220.

Christensen, T., Woeldike, H., Boel, E., Mortensen, S. B., Hjortshoej, K., Thim, L., & Hansen, M. T. (1988). High level expression of recombinant genes in Aspergillus oryzae. Bio/technology, 6(12), 1419-1422.

Conab. (2019). Companhia Nacional de Abastecimento (Conab). (2019). Produção de etanol no Brasil mantém recorde com 33,14 bilhões de litros (23/04-2019). https://www.conab.gov.br/ultimas-noticias/2859-producao-de-etanol-no-brasil-mantem-recorde-e-alcanca-33-58-bilhoes-de-litros.

Costa Junior, J. A., Cadorin, A.M., Caron, B. O., Mallmann, C.A., Anes, E.R.C., Coutinho, C. M., Schmidt, D., Leães, F. L., Soares, G.S., Antunes, G.S., Ledur, I., Szekut, L. R.R., Manfron, P. A., Dilkin, P., Souza, V.Q. (2013). Ciência e Tecnologias Aplicadas às Matéria-Primas: Alimentar, Agroindustrial, Bioprocessos e Bioenergias – do ensino técnico superior e pós-graduação. 2. ed. Porto Alegre: Cidadela Editorial, 1: 396.

Cullen, D., & Kersten, P. (1992). Fungal enzymes for lignocellulose degradation. Applied molecular genetics of filamentous fungi, 100-131.

Da Silva, J. A. (2016). Catálise enzimática na produção de etanol de segunda geração. Monografia de TCC. Universidade Federal de São João del-Rei-MG.

De Paula, E. H., Poças-Fonseca, M. J., & Azevedo, M.O. (2003). The product of Humicola grisea var. thermoidea cbh1. 2 gene is the major expressed protein under induction by lignocellulosic residues. World Journal of Microbiology and Biotechnology, 19(6), 631-635.

De Melo, I. S., Valadares-Inglis, M. C., Nass, L. L., & Valois, A. C. C. (2002). Recursos genéticos & melhoramento: microrganismos. Jaguariuna: Embrapa Meio Ambiente.

Den Haan, R., Van Zyl, J. M., Harms, T. M., & van Zyl, W. H. (2013). Modeling the minimum enzymatic requirements for optimal cellulose conversion. Environmental Research Letters, 8(2), 025013.

Den Haan, R., Rose, S. H., Lynd, L. R., & van Zyl, W. H. (2007). Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metabolic engineering, 9(1), 87-94.

Dunn-Coleman, N. S., Bloebaum, P., Berka, R. M., Bodie, E., Robinson, N., Armstrong, G., ... & Heinsohn, H. (1991). Commercial levels of chymosin production by Aspergillus. Bio/Technology, 9(10), 976-981.

Enari, T. M., Fogarty, W. M., & Kelly, C. T. (1983). Microbial enzymes and biotechnology. Fao. (2000). El espectro de la malnutrición: Datos Básicos. Organización de las Naciones Unidas para la Agricultura y la Alimentación – FAO, 2000. http// www.fao.org.

Fao. (2002). Cumbre Mundial sobre la Alimentación: cinco años después Sede de la FAO, Roma, Italia, 10-13 de junio de 2002. http://www.fao.org.

Florencio, C., Badino, A. C., & Farinas, C. S. (2017). Desafios relacionados à produção e aplicação das enzimas celulolíticas na hidrólise da biomassa lignocelulósica. Química Nova, 40, 1082-1093.

Fuentefria, A. M. (2004). Identificação e avaliação do potencial biotecnológico de leveduras e fungos semelhantes a leveduras isolados de filoplano do Hibiscus rosa-sinensis. Dissertação (mestrado em microbiologia agrícola e do ambiente). Universidade Federal do Rio Grande do Sul, Porto Alegre.

Furlan, A. D. F. (2015). Produção de bioetanol de segunda geração pelo consórcio Zymomonas mobilis CCT4494 e Candida tropicallis em resíduos de uvas Isabel e Bordô. Dissertação (Mestrado em Engenharia e Ciências de Alimentos) - Instituto de Biociências, Letras e Ciências Exatas da Universidade Estadual Paulista “Júlio de Mesquita Filho”, São José do Rio Preto – SP.

Gamba, R. R., Yamamoto, S., Abdel-Hamid, M., Sasaki, T., Michihata, T., Koyanagi, T., & Enomoto, T. (2020). Chemical, microbiological, and functional characterization of kefir produced from cow’s milk and soy milk. International Journal of Microbiology, 2020.

Gaur, R., Garg, S. K., Singh, S. P., & Verma, J. (1993). A comparative study of the production of amylase from Humicola and Paecilomyces species. Bioresource technology, 46(3), 213-216.

Godbole, S., Decker, S. R., Nieves, R. A., Adney, W. S., Vinzant, T. B., Baker, J. O., ... & Himmel, M. E. (1999). Cloning and expression of Trichoderma reesei cellobiohydrolase I in Pichia pastoris. Biotechnology progress, 15(5), 828-833.

Grael, E. (1998). Clonagem e expressão do cDNA de lisozima de Drosophila melanogaster em Saccharomyces cerevisiae visando o controle de contaminantes bacterianos da fermentação alcoólica. Tese (Doutorado) – Programa de Microbiologia, Universidade de São Paulo-SP.

Han, Y. W., Dunlap, C. E., & Callihan, C. D. (1971). Single cell protein from cellulosic wastes. Food technology, 25(2), 32.

Haki, G. D., & Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes: a review. Bioresource technology, 89(1), 17-34.

Hartley, J. L. (2006). Cloning technologies for protein expression and purification. Current Opinion in Biotechnology, 17(4), 359-366.

Hill, J.E., Myers, A. M., Koerner, T. J., Tzagoloff, A. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast. 1986, 2: 163-167.

Hinnen, A., Buxton, F., Chandhuri, B., Hein, J., Hottinger, T., Meyhack, B and Pohlig, G. (1995). Gene expression in recombinant yeast. In Gene Expression in Recombinant Micro-organisms (ed. A. Smith). Marcel Dekker Inc., 121-193.

Hou, L., Cao, X., Wang, C., & Lu, M. (2009). Effect of overexpression of transcription factors on the fermentation properties of Saccharomyces cerevisiae industrial strains. Letters in applied microbiology, 49(1), 14-19.

Hurst, L. D., Williams, E. J., & Pál, C. (2002). Natural selection promotes the conservation of linkage of co-expressed genes. Trend in Genetics, 18(12), 604-606.

Israilides, C. J., & Codounis, M. I. (1982). Utilization of agricultural wastes for animal feed and energy. Georgiki Erevna (Greece).

Khademi, S., Guarino, L. A., Watanabe, H., Tokuda, G., & Meyer, E. F. (2002). Structure of an endoglucanase from termite, Nasutitermes takasagoensis. Acta Crystallographica Section D: Biological Crystallography, 58(4), 653-659.

Kleman-Leyer, K. M., SiiKa-Aho, M., Teeri, T. T., & Kirk, T. K. (1996). The cellulases endoglucanase I and cellobiohydrolase II of Trichoderma reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size. Applied and environmental microbiology, 62(8), 2883-2887.

Kohlhepp, G. (2010). Análise da situação da produção de etanol e biodiesel no Brasil. Estudos avançados, 24(68), 223-253.

Landell, M.F., Valente, P. (2009). Biodiversidade e potencial biotecnológico de leveduras e fungos leveduriformes associados ao filoplano de bromélias do parque de Itapuã - Viamão/RS. Universidade Federal do Rio Grande do Sul - RS.

Landry, C. R., Townsend, J. P., Hartl, D. L., & Cavalieri, D. (2006). Ecological and evolutionary genomics of Saccharomyces cerevisiae. Molecular ecology, 15(3), 575-591.

Lee, W. H., Nan, H., Kim, H. J., & Jin, Y. S. (2013). Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase. Journal of biotechnology, 167(3), 316-322.

Leite, F. C. B. (2008). Construção de vetores para modificação genética de linhagens industriais de Saccharomyces cerevisiae. Dissertação (Mestrado), Universidade Federal de Pernambuco-PE.

Li, B., & Renganathan, V. (1998). Gene cloning and characterization of a novel cellulose-binding β-glucosidase from Phanerochaete chrysosporium. Applied and environmental microbiology, 64(7), 2748-2754.

Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress in energy and combustion science, 38(4), 449-467.

Liu, Z. L., Li, H. N., Song, H. T., Xiao, W. J., Xia, W. C., Liu, X. P., & Jiang, Z. B. (2018). Construction of a trifunctional cellulase and expression in Saccharomyces cerevisiae using a fusion protein. BMC biotechnology, 18(1), 1-7.

Lo, C. M., & Ju, L. K. (2009). Sophorolipids-induced cellulase production in cocultures of Hypocrea jecorina Rut C30 and Candida bombicola. Enzyme and microbial technology, 44(2), 107-111.

Lucena, B. T. L., Silva-Filho, E. A., Coimbra, M. R. M., Morais, J. O. F., Simões, D. A., & Morais Jr, M. A. (2007). Chromosome instability in industrial strains of Saccharomyces cerevisiae batch cultivated under laboratory conditions. Genet Mol Res, 6(4), 1072-1084.

Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and molecular biology reviews, 66(3), 506-577.

Maheshwari, R., Bharadwaj, G., & Bhat, M. K. (2000). Thermophilic fungi: their physiology and enzymes. Microbiology and molecular biology reviews, 64(3), 461-488.

Maia, L. C., & Carvalho Jr, A. A. (2010). Os fungos do Brasil. Catálogo de plantas e fungos do Brasil, 1, 43-48.

Martins, M. P. (2017). Adsorção e reciclagem de enzimas de Chrysoporthe cubensis durante a sacarificação do bagaço de cana-de-açúcar com diferentes conteúdos de lignina. Dissertação (mestrado), Universidade Federal de Viçosa-MG.

Miller, B. M., & Litsky, W. (1976). Single cell protein in microbiology. McGrow-Hill Book Co, New York-USA.

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), 426-428.

Miller, G. T. Jr. (2005). Living in the environment (14th ed.). Belmont, CA: Wadsworth.

Monti, R., Terenzi, H. F., & Jorge, J. A. (1991). Purification and properties of an extracellular xylanase from the thermophilic fungus Humicola grisea var. thermoidea. Canadian Journal of Microbiology, 37(9), 675-681.

Monteiro, M. F., Rosa, H. A., & dos Santos Reis, A. C. C. (2016). Produção de etanol de primeira e segunda geração. Acta Iguazu, 5(5), 211-217.

Moore, D., Robson, G. D., & Trinci, A. P. (2020). 21st century guidebook to fungi, (2a ed.), Cambridge University Press, UK.

Nelson, D. L., & Cox, M. M. (2018). Princípios de Bioquímica de Lehninger, 7ed. Artmed Editora, Porto Alegre, RS.

Okada, H., Tada, K., Sekiya, T., Yokoyama, K., Takahashi, A., Tohda, H., ... & Morikawa, Y. (1998). Molecular characterization and heterologous expression of the gene encoding a low-molecular-mass endoglucanase from Trichoderma reesei QM9414. Applied and Environmental Microbiology, 64(2), 555-563.

ONU. Organização das Nações Unidas. (2018). Perspectivas Mundiais de População. Divisão de População do Departamento da ONU de Assuntos Econômicos e Sociais (DESA). https://nacoesunidas.org/populacao-mundial-deve-chegar-a-97-bilhoes-de-pessoas-em-2050-diz-relatorio-da-onu/.

Ostergaard, S., Olsson, L., & Nielsen, J. (2000). Metabolic engineering of Saccharomyces cerevisiae. Microbiology and molecular biology reviews, 64(1), 34-50.

Paulo, B. S., Sigrist, R., & Oliveira, L. G. D. (2019). Recent advances in combinatorial biosynthesis of polyketides: perspectives and challenges. Química Nova, 42(1), 71-83.

Peralta, R. M., Terenzi, H. F., & Jorge, J. A. (1990). β-D-glycosidase activities of Humicola grisea: biochemical and kinetic characterization of a multifunctional enzyme. Biochimica et Biophysica Acta (BBA)-General Subjects, 1033(3), 243-249.

Phitsuwan, P., Sakka, K., & Ratanakhanokchai, K. (2013). Improvement of lignocellulosic biomass in planta: a review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability. Biomass and Bioenergy, 58, 390-405.

Pocas-Fonseca, M. J., Lima, B. D., Brigido, M. M., Silva-Pereira, I., Felipe, M. S. S., Radford, A., & Azevedo, M. O. (1997). Humicola grisea var. thermoidea cbh1. 2: Anew gene in the family of cellobiohydrolases is expressed and encodes a cellulose-binding domain-less enzyme. The Journal of General and Applied Microbiology, 43(2), 115-120.

Poças-Fonseca, M. J., Silva-Pereira, I., Rocha, B. B., & Azevedo, M. D. O. (2000). Substrate-dependent differential expression of Humicola grisea var. thermoidea cellobiohydrolase genes. Canadian journal of microbiology, 46(8), 749-752.

Rabinovich, M. L., Melnik, M. S., & Bolobova, A. V. (2002). Dedicated to the memory of IV Berezin and RV Feniksova Microbial Cellulases. Applied Biochemistry and Microbiology, 38(4), 305-322.

Robak, K., & Balcerek, M. (2018). Review of second generation bioethanol production from residual biomass. Food technology and biotechnology, 56(2), 174.

Romanos, M. A., Scorer, C. A., & Clare, J. J. (1992). Foreign gene expression in yeast: a review. Yeast, 8(6), 423-488.4

Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, (2a ed.) Cold Spring Harbor, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Saloheimo, M., & Pakula, T. M. (2012). The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology, 158(1), 46-57.

Sandgren, M., Ståhlberg, J., & Mitchinson, C. (2005). Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. Progress in biophysics and molecular biology, 89(3), 246-291.

Santos, F. A., Queiróz, J. H. D., Colodette, J. L., Fernandes, S. A., Guimarães, V. M., & Rezende, S. T. (2012). Potencial da palha de cana-de-açúcar para produção de etanol. Química nova, 35, 1004-1010.

Schülein, M., Kauppinen, M. S., Lange, L., Lassen, S. F., Andersen, L. N., Klysner, S., & Nielsen, J. B. (1998). Characterization of fungal cellulases for fiber modification. Enzyme applications in fiber processing. Chapter 6pp 66-74.

Sikorski, R. S., & Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics, 122(1), 19-27.

Silva, R. D., & Coelho, G. D. (2006). Fungos: principais grupos e aplicações biotecnológicas. Instituto de Botânica, 5(1), 40-60.

Sorensen, A., Lübeck, M., Lübeck, P. S., & Ahring, B. K. (2013). Fungal beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules, 3(3), 612-631.

Takashima, S., Nakamura, A., Masaki, H., & Uozumi, T. (1996). Purification and characterization of cellulases from Humicola grisea. Bioscience, biotechnology, and biochemistry, 60(1), 77-82.

Teather, R. M., & Wood, P. J. (1982). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and environmental microbiology, 43(4), 777-780.

Teeri, T. T. (1997). Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends in biotechnology, 15(5), 160-167.

Usharani, G., Saranraj, P., & Kanchana, D. (2012). Spirulina cultivation: a review. Int J Pharm Biol Arch, 3(6), 1327-1341.

Van Rensburg, P., Van Zyl, W. H., & Pretorius, I. S. (1998). Engineering yeast for efficient cellulose degradation. Yeast, 14(1), 67-76.

Vasey, R. B., & Powell, K. A. (1984). Single-cell protein. Biotechnology and genetic engineering reviews, 2(1), 285-311.

Vieira, S. S., de Aguiar, C. V., da Silva, L. G., & Maia, C. B. (2019, December). Patologia de grãos de milho na Companhia Nacional de Abastecimento–Conab. In: Anais do Congresso Brasileiro de Fitossanidade (Vol. 5, No. 1).

Voet, D., & Voet, J. G. (2010). Biochemistry, 4th. ed., John Wiley & Sons, New York.

Walt, J.P. Van der., Yarrow, D. (1984). Methods for isolation maintenance classification and identification of yeasts. In: Kreger-Van Rij, N.J.W. (Ed.). The yeasts: a taxonomy study. Amsterdam: Elsevier Science.

Wang, Y. D., Shen, X. Y., Li, Z. L., Li, X., Wang, F., Nie, X. A., & Jiang, J. C. (2010). Immobilized recombinant Rhizopus oryzae lipase for the production of biodiesel in solvent free system. Journal of Molecular Catalysis B: Enzymatic, 67(1-2), 45-51.

Ware, S. (1977). Single cell protein and other food recovery technologies from waste. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/8-77/007.

Watanabe, H., & Tokuda, G. (2010). Cellulolytic systems in insects. Annual review of entomology, 55, 609-632.

White, W. L., & Downing, M. H. (1953). Humicola grisea, a soil-inhabiting, cellulolytic hyphomycete. Mycologia, 45(6), 951-963.

Zaldivar, J., Borges, A., Johansson, B., Smits, H., Villas-Bôas, S., Nielsen, J., & Olsson, L. (2002). Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Applied microbiology and biotechnology, 59(4), 436-442.

Zhang, Y. H. P., Cui, J., Lynd, L. R., & Kuang, L. R. (2006). A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules, 7(2), 644-648.

Published

17/12/2022

How to Cite

COSTA JUNIOR, J. A. da .; VICENTE, E. J. .; MARASCA , E. T. G. .; TORRES , F. A. G. .; MORAES , L. M. P. de .; BONES , U. A. . Biotechnology: use of available carbon sources on the planet to generate alternatives energy. Research, Society and Development, [S. l.], v. 11, n. 16, p. e536111627904, 2022. DOI: 10.33448/rsd-v11i16.27904. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27904. Acesso em: 19 apr. 2024.

Issue

Section

Agrarian and Biological Sciences