Towards a Classification Model using CNN and Wavelets applied to COVID-19 CT images

Authors

DOI:

https://doi.org/10.33448/rsd-v11i5.27919

Keywords:

CT images; Convolutional Neural Networks; COVID-19; Wavelets; WCN-COVID.

Abstract

In late 2019, a new type of coronavirus emerged in China and was named SARS-CoV-2. It first impacted the country where it emerged and then spread around the world. SARS-CoV-2 is the cause of COVID-19 disease that leaves characteristic impressions on chest CT images of infected patients. In this article, we propose a classification model, based on CNN and wavelet transform, to classify images of COVID-19 patients. It was named WCNN-COVID. The model was applied and tested in open and private TC image repositories. A total of 25534 images of 200 patients were processed. The confusion matrix was generated by calculating Accuracy (ACC), Sensitivity (Sen) and Specificity (Sp). The Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUCs) were also plotted and used for evaluation. Metric results were ACC = 0.9950, Sen = 99.16% and Sp = 99.89%.

References

Abbas, A., Abdelsamea, M., & Gaber, M. (2020, 4). Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. https://doi.org/10.1101/2020.03.30.20047456

Aggarwal, C. C., & others. (2018). Neural networks and deep learning. Springer https://doi.org/10.1007/978-3-319-94463-0

Balas, V. E., Roy, S. S., Sharma, D., & Samui, P. (2019). Handbook of deep learning applications (Vol. 136). Springer. https://doi.org/10.1007/978-3-030-11479-4

Barstugan, M., Ozkaya, U., & Ozturk, S. (2020). Coronavirus (covid-19) classification using ct images by machine learning methods. arXiv preprint arXiv:2003.09424.

Bassi, P. R., & Attux, R. (2020). A Deep Convolutional Neural Network for COVID-19 Detection Using Chest X-Rays. arXiv preprint arXiv:2005.01578.

Chen(a), H., Guo, S., Hao, Y., Fang, Y., Fang, Z., Wu, W., & Li, S. (2021). Auxiliary Diagnosis for COVID-19 with Deep Transfer Learning. Journal of Digital Imaging, 1–11.

Chen, J., Wu, L., Zhang, J., Zhang, L., Gong, D., Zhao, Y., et al. (2020). Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography: a prospective study. MedRxiv.

Chollet, F. (2016). Building powerful image classification models using very little data. Keras Blog. Retrieved from https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html

Cui, J., Li, F., & Shi, Z.-L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17, 181–192. https://doi.org/10.1038/s41579-018-0118-9

da Costa Junior, C. A., & Patrocinio, A. C. (2019). Performance Evaluation of Denoising Techniques Applied to Mammograms of Dense Breasts. XXVI Brazilian Congress on Biomedical Engineering, (pp. 369–374).

Dai, W.-c., Zhang, H.-w., Yu, J., Xu, H.-j., Chen, H., Luo, S.-p., et al., (2020). CT imaging and differential diagnosis of COVID-19. Canadian Association of Radiologists Journal, 71, 195–200. https://doi.org/10.1177/0846537120913033

dos S Ribeiro, C., van Roode, M. Y., Haringhuizen, G. B., Koopmans, M. P., Claassen, E., & van de Burgwal, L. H. (2018). How ownership rights over microorganisms affect infectious disease control and innovation: A root-cause analysis of barriers to data sharing as experienced by key stakeholders. PLoS One, 13, e0195885. https://doi.org/10.1371/journal.pone.0195885

Guo, T., Seyed Mousavi, H., Huu Vu, T., & Monga, V. (2017). Deep wavelet prediction for image super-resolution. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, (pp. 104–113).

He, K., & Sun, J. (2015). Convolutional neural networks at constrained time cost. Proceedings of the IEEE conference on computer vision and pattern recognition, (pp. 5353–5360).

Ishitaki, T., Oda, T., & Barolli, L. (2016). A neural network based user identification for Tor networks: Data analysis using Friedman test. 2016 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA), (pp. 7–13). https://doi.org/10.1109/waina.2016.143

Jansen, M. (2012). Noise reduction by wavelet thresholding (Vol. 161). Springer Science & Business Media. https://doi.org/10.1007/978-1-4613-0145-5

Khatami, A., Khosravi, A., Nguyen, T., Lim, C. P., & Nahavandi, S. (2017). Medical image analysis using wavelet transform and deep belief networks. Expert Systems with Applications, 86, 190–198. https://doi.org/10.1016/j.eswa.2017.05.073

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, (pp. 1097–1105).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521, 436–444. https://doi.org/10.1038/nature14539

Maranhão, A. (2020). COVID-19 CT: scans20 CT scans and expert segmentations of patients with COVID-19. Retrieved 02 02, 2021, from Kaggle: https://www.kaggle.com/andrewmvd/covid19-ct-scans

Martin, D. R., Hanson, J. A., Gullapalli, R. R., Schultz, F. A., Sethi, A., & Clark, D. P. (2020). A deep learning convolutional neural network can recognize common patterns of injury in gastric pathology. Archives of pathology & laboratory medicine, 144, 370–378. https://doi.org/10.5858/arpa.2019-0004-OA~

Merry, R. J. (2005). Wavelet theory and applications: a literature study. DCT rapporten, 2005.

MosMedData. (2020). MosMedData: COVID19_1000 Dataset:Chest CT Scans with COVID-19. Retrieved from https://mosmed.ai/en/

Narin, A., Kaya, C., & Pamuk, Z. (2020). Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. arXiv preprint arXiv:2003.10849.

Ozkaya, U., Ozturk, S., & Barstugan, M. (2020). Coronavirus (COVID-19) Classification using Deep Features Fusion and Ranking Technique. arXiv preprint arXiv:2004.03698.

Ozturk, S., Ozkaya, U., & Barstugan, M. (2020). Classification of coronavirus images using shrunken features. medRxiv. https://doi.org/10.1101/2020.04.03.20048868

PINHEIRO, J. I., CUNHA, S. B., CARVAJAL, S. R., & GOMES, G. C. (2009). Estatı́stica Básica: A arte de trabalhar com dados. Rio de Janeiro–RJ. Estatı́stica Básica: A arte de trabalhar com dados. Rio de Janeiro–RJ. Editora Elsevier.

Ponti, M. A., & da Costa, G. B. (2018). Como funciona o deep learning. arXiv preprint arXiv:1806.07908.

Rafael, C. (2006). Gonzalez, and Richard E. Woods. Digital image processing.

Ravı̀, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., & Yang, G.-Z. (2016). Deep learning for health informatics. IEEE journal of biomedical and health informatics, 21, 4–21. https://doi.org/10.1109/JBHI.2016.2636665

Ribeiro, C. d., Koopmans, M. P., & Haringhuizen, G. B. (2018). Threats to timely sharing of pathogen sequence data. Science, 362, 404–406. https://doi.org/10.1126/science.aau5229

Ruuska, S., Hämäläinen, W., Kajava, S., Mughal, M., Matilainen, P., & Mononen, J. (2018). Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle. Behavioural processes, 148, 56–62. https://doi.org/10.1016/j.beproc.2018.01.004

Sethy, P. K., & Behera, S. K. (2020). Detection of coronavirus disease (covid-19) based on deep features. Preprints, 2020030300, 2020. https://doi.org//10.20944/preprints202003.0300.v1

Sherry, S. T., Ward, M.-H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). dbSNP: the NCBI database of genetic variation. Nucleic acids research, 29, 308–311. https://doi.org/10.1093/nar/29.1.308

Shirazi, A. Z., Chabok, S. J., & Mohammadi, Z. (2018). A novel and reliable computational intelligence system for breast cancer detection. Medical & biological engineering & computing, 56, 721–732. https://doi.org/10.1007/s11517-017-1721-z

Simon, J. H., Claassen, E., Correa, C. E., & Osterhaus, A. D. (2005). Managing severe acute respiratory syndrome (SARS) intellectual property rights: the possible role of patent pooling. Bulletin of the World Health Organization, 83, 707–710.

Skansi, S. (2018). Introduction to Deep Learning: from logical calculus to artificial intelligence. Springer. doi:https://doi.org/10.1007/978-3-319-73004-2

Summers, R. (2020). NIH Clinical Center:dataset of 32,000 CT images. Retrieved from https://www.nih.gov/news-events/news-releases/nih-clinical-center-releases-dataset-32000-ct-images

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition, (pp. 1–9). https://doi.org/10.1109/CVPR.2015.7298594

Wang(d), G., Liu, X., Li, C., Xu, Z., Ruan, J., Zhu, H., & Zhang, S. (2020). A Noise-robust Framework for Automatic Segmentation of COVID-19 Pneumonia Lesions from CT Images_. IEEE Transactions on Medical Imaging. https://doi.org/10.1109/TMI.2020.3000314

Wang, L., & Wong, A. (2020). COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest X-Ray Images. arXiv preprint arXiv:2003.09871.

Wang, X., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., & Zheng, C. (2020). A Weakly-supervised Framework for COVID-19 Classification and Lesion Localization from Chest CT. IEEE Transactions on Medical Imaging. https://doi.org/10.1109/tmi.2020.2995965

Wani, M. A., Bhat, F. A., Afzal, S., & Khan, A. I. (2020). Advances in deep learning (Vol. 57). Springer. https://doi.org/10.1007/978-981-13-6794-6

Weiss, S. R., & Leibowitz, J. L. (2011). Coronavirus pathogenesis. In Advances in virus research (Vol. 81, pp. 85–164). Elsevier. https://doi.org/10.1016/B978-0-12-385885-6.00009-2

Williams, T., & Li, R. (2016). Advanced image classification using wavelets and convolutional neural networks. 2016 15th IEEE international conference on machine learning and applications (ICMLA), (pp. 233–239). https://doi.org/10.1109/icmla.2016.0046

Wu, J. (2013). Institute of Genomics, Chinese Academy of Science, China National Center for Bioinformation & National Genomics Data Center. Institute of Genomics, Chinese Academy of Science, China National Center for Bioinformation & National Genomics Data Center. China. Retrieved from https://bigd.big.ac.cn/ncov/?lang=en

Wu, X., Hui, H., Niu, M., Li, L., Wang, L., He, B., et al. (2020). Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: a multicentre study. European Journal of Radiology, 109041.

Yang, S., Jiang, L., Cao, Z., Wang, L., Cao, J., Feng, R., & Shan, F. (2020). Deep learning for detecting corona virus disease 2019 (COVID-19) on high-resolution computed tomography: a pilot study. Annals of Translational Medicine, 8. https://doi.org/10.21037/atm.2020.03.132

Yang, W., Cao, Q., Qin, L., Wang, X., Cheng, Z., Pan, A., & others. (2020). Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): A multi-center study in Wenzhou city, Zhejiang, China. Journal of Infection. https://doi.org/10.1016/j.jinf.2020.02.016

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. European conference on computer vision, (pp. 818–833). https://doi.org/10.1007/978-3-319-10590-1_53

Zhang, J., Xie, Y., Li, Y., Shen, C., & Xia, Y. (2020). Covid-19 screening on chest x-ray images using deep learning based anomaly detection. arXiv preprint arXiv:2003.12338.

Zhu, N., Zhang, D., Wang, W., & others. (n.d.). China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019 [published January 24, 2020]. N Engl J Med. doi:https://doi.org/10.1056/NEJMoa2001017

Zimmerman, D. W., & Zumbo, B. D. (1993). Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks. The Journal of Experimental Education, 62, 75–86. https://doi.org/10.1080/00220973.1993.9943832

Downloads

Published

28/03/2022

How to Cite

SOUSA, P. M. de; CARNEIRO, P. C.; PEREIRA, G. M.; OLIVEIRA, M. M.; COSTA JUNIOR, C. A. da; MOURA, L. V. de; MATTJIE, C.; SILVA, A. M. da; MACEDO, T. A. A.; PATROCINIO, A. C. Towards a Classification Model using CNN and Wavelets applied to COVID-19 CT images. Research, Society and Development, [S. l.], v. 11, n. 5, p. e2411527919, 2022. DOI: 10.33448/rsd-v11i5.27919. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27919. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences