Prioritization of Atlantic Forest remnants for biodiversity conservation: A patch index development
DOI:
https://doi.org/10.33448/rsd-v11i5.27962Keywords:
Landscape metrics; Landscape ecology; GIS; Atlantic Forest; Patches prioritization; Biodiversity conservation.Abstract
Atlantic forest fragmentation is considered a serious threat to biodiversity since this biome is considered the hottest hotspot. Due to this reason, many environmental strategies are being developed in order to support its, one of them being the prioritization of forest remnants using landscape ecology metrics. Thus, the main objective of this study is the development of a patches prioritization index (PPI) in order to support conservation actions and research. Firstly, a diagnosis of forest remnants in the study area was performed using landscape ecology metrics. Secondly, by literature review and expert consulting, were selected the adequate landscape ecology metrics, next, their importance was determined for PPI composition. Selected landscape metrics (AREA, SHAPE, and NEARD) composed the PPI. Finally, using a rapid ecological assessment (BII) the PPI was validated in the field. The results showed that the study area has patches able to aid biodiversity maintenance in the landscape. Further, the selection and importance attributed to landscape ecology metrics were demonstrated to be adequate. Also, the index is accurate enough to identify priority patches, classes, and regions for biodiversity conservation. Finally, the validation of PPI in the field showed that PPI is effective to estimate patches integrity in the field. In conclusion, our results suggest that PPI could be used for the prioritization of Atlantic forest remnants in a landscape covered mainly by Atlantic forest remnants and agriculture.
References
Avon, C., & Bergès, L. (2016). Prioritization of habitat patches for landscape connectivity conservation differs between least-cost and resistance distances. Landscape ecology, 31(7), 1551-1565.
Azhar, B., Lindenmayer, D. B., Wood, J., Fischer, J., Manning, A., Mcelhinny, C., & Zakaria, M. (2013). The influence of the agricultural system, stand structural complexity and landscape context on foraging birds in oil palm landscapes. Ibis, 155(2), 297-312.
Banks‐Leite, C., Ewers, R. M., Kapos, V., Martensen, A. C., & Metzger, J. P. (2011). Comparing species and measures of landscape structure as indicators of conservation importance. Journal of Applied Ecology, 48(3), 706-714.
Baldwin, R. F., Hanks, R. D., & Dertien, J. S. (2021). Landscape ecology contributions to biodiversity conservation. The Routledge Handbook of Landscape Ecology, 367-385.
Billeter, R., Liira, J., Bailey, D., Bugter, R., Arens, P., Augenstein, I., & Edwards, P. J. (2008). Indicators for biodiversity in agricultural landscapes: a pan‐European study. Journal of Applied Ecology, 45(1), 141-150.
Boron, V., Deere, N. J., Xofis, P., Link, A., Quiñones-Guerrero, A., Payan, E., & Tzanopoulos, J. (2019). Richness, diversity, and factors influencing occupancy of mammal communities across human-modified landscapes in Colombia. Biological conservation, 232, 108-116.
Brodie, J. F., Paxton, M., Nagulendran, K., Balamurugan, G., Clements, G. R., Reynolds, G., & Hon, J. (2016). Connecting science, policy, and implementation for landscape‐scale habitat connectivity. Conservation Biology, 30(5), 950-961.
Brudvig, L. A., Leroux, S. J., Albert, C. H., Bruna, E. M., Davies, K. F., Ewers, R. M., & Resasco, J. (2017). Evaluating conceptual models of landscape change. Ecography, 40(1), 74-84.
Bruscagin, R. T., Dixo, M., Famelli, S., & Bertoluci, J. (2017). Patch size effects on richness, abundance, and diversity of leaf-litter lizards from Atlantic rainforest fragments. Salamandra, 53(1), 59-65.
Burke, D. J., Knisely, C., Watson, M. L., Carrino-Kyker, S. R., & Mauk, R. L. (2016). The effects of agricultural history on forest ecological integrity as determined by a rapid forest assessment method. Forest Ecology and Management, 378, 1-13.
Carroll, C., Dunk, J. R., & Moilanen, A. (2010). Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA. Global Change Biology, 16(3), 891-904.
Carvalho, F., Carvalho, R., Mira, A., & Beja, P. (2016). Assessing landscape functional connectivity in a forest carnivore using path selection functions. Landscape Ecology, 31(5), 1021-1036.
de Lima, G. T. N. P., dos Santos Hackbart, V. C., Bertolo, L. S., & dos Santos, R. F. (2016). Identifying driving forces of landscape changes: Historical relationships and the availability of ecosystem services in the Atlantic forest. Ecosystem services, 22, 11-17.
de Mello, K., Randhir, T. O., Valente, R. A., & Vettorazzi, C. A. (2017). Riparian restoration for protecting water quality in tropical agricultural watersheds. Ecological Engineering, 108, 514-524.
Dickson, B. G., Zachmann, L. J., & Albano, C. M. (2014). Systematic identification of potential conservation priority areas on roadless Bureau of Land Management lands in the western United States. Biological Conservation, 178, 117-127.
Edwards, F. A., Finan, J., Graham, L. K., Larsen, T. H., Wilcove, D. S., Hsu, W. W., & Hamer, K. C. (2017). The impact of logging roads on dung beetle assemblages in a tropical rainforest reserve. Biological conservation, 205, 85-92.
Ewers, R. M., & Didham, R. K. (2006). Confounding factors in the detection of species responses to habitat fragmentation. Biological reviews, 81(1), 117-142.
de F Fernandes, J., de Souza, A. L., & Tanaka, M. O. (2014). Can the structure of a riparian forest remnant influence stream water quality? A tropical case study. Hydrobiologia, 724(1), 175-185.
Galvani, F. M., Graciano-Silva, T., & Cardoso-Leite, E. (2020). Is biotic integrity of urban forests remants related with their size and shape? CERNE, 26, 09-17.
Gascon, C., Williamson, G. B., & da Fonseca, G. A. (2000). Receding forest edges and vanishing reserves. Science, 288(5470), 1356-1358.
Hanski, I., & Ovaskainen, O. (2000). The metapopulation capacity of a fragmented landscape. Nature, 404(6779), 755-758.
Hodgson, J. A., Moilanen, A., Wintle, B. A., & Thomas, C. D. (2011). Habitat area, quality and connectivity: striking the balance for efficient conservation. Journal of Applied Ecology, 48(1), 148-152.
Hodgson, J. A., Thomas, C. D., Wintle, B. A., & Moilanen, A. (2009). Climate change, connectivity and conservation decision making: back to basics. Journal of Applied Ecology, 46(5), 964-969.
Herrera, L. P., Sabatino, M. C., Jaimes, F. R., & Saura, S. (2017). Landscape connectivity and the role of small habitat patches as stepping stones: an assessment of the grassland biome in South America. Biodiversity and conservation, 26(14), 3465-3479.
Iezzi, M. E., Di Bitetti, M. S., Pardo, J. M., Paviolo, A., Cruz, P., & De Angelo, C. (2022). Forest fragments prioritization based on their connectivity contribution for multiple Atlantic Forest mammals. Biological Conservation, 266, 109433.
Joly, C. A., Metzger, J. P., & Tabarelli, M. (2014). Experiences from the B Brazilian A Atlantic Forest: ecological findings and conservation initiatives. New phytologist, 204(3), 459-473.
Jones, K. R., Watson, J. E., Possingham, H. P., & Klein, C. J. (2016). Incorporating climate change into spatial conservation prioritisation: A review. Biological Conservation, 194, 121-130.
Jousimo, J., Tack, A. J., Ovaskainen, O., Mononen, T., Susi, H., Tollenaere, C., & Laine, A. L. (2014). Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science, 344(6189), 1289-1293.
Liu, H., & Weng, Q. (2013). Landscape metrics for analysing urbanization-induced land use and land cover changes. Geocarto International, 28(7), 582-593.
Liu, T., & Yang, X. (2015). Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Applied geography, 56, 42-54.
Magioli, M., Ferraz, K. M. P. M. D. B., Setz, E. Z. F., Percequillo, A. R., Rondon, M. V. D. S. S., Kuhnen, V. V., & Rodrigues, M. G. (2016). Connectivity maintain mammal assemblages functional diversity within agricultural and fragmented landscapes. European journal of wildlife research, 62(4), 431-446.
Magnago, L. F. S., Magrach, A., Laurance, W. F., Martins, S. V., Meira‐Neto, J. A. A., Simonelli, M., & Edwards, D. P. (2015). Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+? Global Change Biology, 21(9), 3455-3468.
Martinelli, G., Valente, A. S. M., Maurenza, D., Kutschenko, D. C., Judice, D. M., Silva, D. S., & Penedo, T. S. A. (2013). Avaliações de risco de extinção de espécies da flora brasileira. Livro vermelho da flora do Brasil, 1.
Mateo-Sánchez, M. C., Balkenhol, N., Cushman, S., Pérez, T., Domínguez, A., & Saura, S. (2015). Estimating effective landscape distances and movement corridors: comparison of habitat and genetic data. Ecosphere, 6(4), 1-16.
McGarigal, K. (2006). Landscape pattern metrics. Encyclopedia of environmetrics.
Medeiros, H. R., & Torezan, J. M. (2013). Evaluating the ecological integrity of Atlantic forest remnants by using rapid ecological assessment. Environmental monitoring and assessment, 185(5), 4373-4382.
Melo, F. P., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M., & Tabarelli, M. (2013). On the hope for biodiversity-friendly tropical landscapes. Trends in ecology & evolution, 28(8), 462-468.
Mittermeier, R. A., Gil, P. R., Hoffmann, M., Pilgrim, J., Brooks, T., Mittermeier, C. G., & Da Fonseca, G. A. B. (2005). Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions: Conservation International. Sierra Madre, Cemex, 315.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858.
Newbold, T., Hudson, L. N., Hill, S. L., Contu, S., Lysenko, I., Senior, R. A., & Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45-50.
Nicasio-Arzeta, S., Zermeño-Hernández, I. E., Maza-Villalobos, S., & Benítez-Malvido, J. (2021). Landscape structure shapes the diversity of tree seedlings at multiple spatial scales in a fragmented tropical rainforest. PloS one, 16(7), e0253284.
Oakleaf, J. R., Matsumoto, M., Kennedy, C. M., Baumgarten, L., Miteva, D., Sochi, K., & Kiesecker, J. (2017). LegalGEO: Conservation tool to guide the siting of legal reserves under the Brazilian Forest Code. Applied Geography, 86, 53-65.
Pardini, R., de Souza, S. M., Braga-Neto, R., & Metzger, J. P. (2005). The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biological conservation, 124(2), 253-266.
Paviolo, A., De Angelo, C., Ferraz, K. M., Morato, R. G., Martinez Pardo, J., Srbek-Araujo, A. C., & Azevedo, F. (2016). A biodiversity hotspot losing its top predator: The challenge of jaguar conservation in the Atlantic Forest of South America. Scientific reports, 6(1), 1-16.
Spiesman, B. J., Stapper, A. P., & Inouye, B. D. (2018). Patch size, isolation, and matrix effects on biodiversity and ecosystem functioning in a landscape microcosm. Ecosphere, 9(3), e02173.
Phillips, H. R., Halley, J. M., Urbina‐Cardona, J. N., & Purvis, A. (2018). The effect of fragment area on site‐level biodiversity. Ecography, 41(7), 1220-1231.
Pierik, M. E., Dell’Acqua, M., Confalonieri, R., Bocchi, S., & Gomarasca, S. (2016). Designing ecological corridors in a fragmented landscape: A fuzzy approach to circuit connectivity analysis. Ecological indicators, 67, 807-820.
Pinto, S. R., Melo, F., Tabarelli, M., Padovesi, A., Mesquita, C. A., de Mattos Scaramuzza, C. A., & Brancalion, P. H. (2014). Governing and delivering a biome-wide restoration initiative: The case of Atlantic Forest Restoration Pact in Brazil. Forests, 5(9), 2212-2229.
Pirnat, J., & Hladnik, D. (2016). Connectivity as a tool in the prioritization and protection of sub-urban forest patches in landscape conservation planning. Landscape and urban planning, 153, 129-139.
Polenšek, M., & Pirnat, J. (2018). Forest patch connectivity: the case of the Kranj-Sora Basin, Slovenia. Acta geographica Slovenica, 58(1).
Porto, T. J., Pinto‐da‐Rocha, R., & da Rocha, P. L. B. (2018). Regional distribution patterns can predict the local habitat specialization of arachnids in heterogeneous landscapes of the Atlantic Forest. Diversity and Distributions, 24(3), 375-386.
Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J., & Hirota, M. M. (2009). The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological conservation, 142(6), 1141-1153.
Ribeiro, M. C., Martensen, A. C., Metzger, J. P., Tabarelli, M., Scarano, F., & Fortin, M. J. (2011). The Brazilian Atlantic Forest: a shrinking biodiversity hotspot. In Biodiversity hotspots (pp. 405-434). Springer, Berlin, Heidelberg.
Sánchez-de-Jesús, H. A., Arroyo-Rodríguez, V., Andresen, E., & Escobar, F. (2016). Forest loss and matrix composition are the major drivers shaping dung beetle assemblages in a fragmented rainforest. Landscape Ecology, 31(4), 843-854.
Schelhas, J., & Greenberg, R. S. (Eds.). (1996). Forest patches in tropical landscapes. Island press.
Shrestha, M., Piman, T., & Grünbühel, C. (2021). Prioritizing key biodiversity areas for conservation based on threats and ecosystem services using participatory and GIS-based modeling in Chindwin River Basin, Myanmar. Ecosystem Services, 48, 101244.
Schindler, S., von Wehrden, H., Poirazidis, K., Hochachka, W. M., Wrbka, T., & Kati, V. (2015). Performance of methods to select landscape metrics for modelling species richness. Ecological Modelling, 295, 107-112.
Spear, S. F., Cushman, S. A., & McRae, B. H. (2015). Resistance surface modeling in landscape genetics. Landscape genetics, 129-148.
Specht, M. J., Pinto, S. R. R., Albuquerque, U. P., Tabarelli, M., & Melo, F. P. (2015). Burning biodiversity: Fuelwood harvesting causes forest degradation in human-dominated tropical landscapes. Global Ecology and Conservation, 3, 200-209.
Tabarelli, M., Pinto, L. P., Silva, J. M. C., Hirota, M. M., & Bedê, L. C. (2005). Desafios e oportunidades para a conservação da biodiversidade na Mata Atlântica brasileira. Megadiversidade, 1(1), 132-138.
Threlfall, C. G., Law, B., & Banks, P. B. (2012). Sensitivity of insectivorous bats to urbanization: Implications for suburban conservation planning. Biological Conservation, 146(1), 41-52.
Toledo-Aceves, T., García-Franco, J. G., Williams-Linera, G., MacMillan, K., & Gallardo-Hernández, C. (2014). Significance of remnant cloud forest fragments as reservoirs of tree and epiphytic bromeliad diversity. Tropical Conservation Science, 7(2), 230-243.
Uezu, A., Beyer, D. D., & Metzger, J. P. (2008). Can agroforest woodlots work as stepping stones for birds in the Atlantic forest region? Biodiversity and Conservation, 17(8), 1907-1922.
Vettorazzi, C. A., & Valente, R. A. (2016). Priority areas for forest restoration aiming at the conservation of water resources. Ecological Engineering, 94, 255-267.
Zheng, C., Pennanen, J., & Ovaskainen, O. (2009). Modelling dispersal with diffusion and habitat selection: analytical results for highly fragmented landscapes. Ecological modelling, 220(12), 1495-1505.
WWF available at: http://wwf.panda.org/knowledge_hub/where_we_work/atlantic_forests/.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ana Paola Salas Gomes Duarte Di Toro; Eliana Cardoso-Leite; Roberta Averna Valente
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.