Efficiency of Trichoplus (Trichoderma asperellum) as a plant growth promoter in soybean in the Cerrado field

Authors

DOI:

https://doi.org/10.33448/rsd-v11i5.27970

Keywords:

Inoculant; Fungus; Glycine max L.; Biomass; Productivity.

Abstract

The objective of this work was to evaluate the efficiency of TrichoPlus (Trichoderma asperellum) as a plant growth promoter in soybean and the productive performance in the field, in the cerrado. Two independent experiments were carried out in the municipalities of Porto Nacional (2019/2020 season) and Formoso do Araguaia (2019 season), Tocantins, Brazil. For the treatment with the TrichoPlus product, the powder formulation was used, with active principle based on T. asperellum, formulated with a minimum concentration of 2 x 108 CFU g-1, having graphite in the composition, being applied directly to the seeds (TS) before planting. Biomass, stand maintenance and productivity parameters were determined. The positive results for the characteristics of biomass, stand maintenance and productivity were evidenced in the treatment with TrichoPlus, observed in the experiments in Porto Nacional, with gains in plant biomass above 19% and an estimated increase in productivity of 8.1%. For the experiments in Formoso do Araguaia, the biomass and productivity data were higher for doses between 4 and 6 g kg-1 of seeds, with productivity gains, for these doses, of 23.6 and 16.2% in relation to the absolute witness, respectively. Soybean inoculation, in the Porto Nacional and Formoso do Araguaia regions, with the TrichoPlus product promoted an increase in biomass characteristics, efficiency in stand maintenance and productivity, proving its efficiency in promoting plant growth and, consequently, in productivity.

Author Biographies

Manuella Costa Souza, Universidade Federal do Tocantins

Biotecnologia; Microbiologia

Albert Lennon Lima Martins, FAPEMIG

Agronomia; Produção Vegetal; Microbiologia 

Celso Afonso Lima, Universidade Federal do Tocantins

Agronomia; Microbiologia

Kellen Ângela Oliveira de Sousa, Universidade Federal do Tocantins

Agronomia; Produção Vegetal; Microbiologia

Paulo Antonio Amaral Cardoso Pinheiro Santana, Universidade Federal do Tocantins

Agronomia; Microbiologia

Milena Barreira Lopes, Universidade Federal do Tocantins

Agronomia; Microbiologia

Lillian França Borges Chagas, Universidade Federal do Tocantins

Agronomia; Produção Vegetal; Microbiologia 

References

Bettiol, W., Silva, J. C. & Castro, M. L. M. P. (2019). Uso atual e perspectivas do Trichoderma no Brasil. In: Meyer, M. C., Mazaro, S. M. & Silva, J. C. (Eds.). Trichoderma: Uso na Agricultura. Brasília, DF: Embrapa.

Bissett, J., Gams, W., Jaklitsch, W. & Samuels, G. J. (2015). Accepted Trichoderma names in the year 2015. IMA Fungus, 6(2), 263-295.

Bononi, L., Chiaramonte, J. B., Pansa, C. C., Moitinho, M. A. & Melo, I. S. Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Scientific Reports, 10(2858), 1-13.

Brasil. (2019). Ministério da Agricultura, Pecuária e Abastecimento. Mercado de biodefensivos cresce mais de 70% no Brasil em um ano. http://www.agricultura.gov.br/noticias/feffmercado-de-biodefensivos-cresce-em-mais-de-50-no-brasil

Chagas, L. F. B., Castro, H. G., Colonia, B. S. O., Carvalho Filho, M. R., Miller, L. O. & Chagas Junior, A. F. (2015). Efficiency of Trichoderma spp. as a growth promoter of cowpea (Vigna unguiculata) and analysis of phosphate solubilization and indole acetic acid synthesis. Brazilian Journal of Botany, 38(4): 1-11.

Chagas, L. F. B., Martins, A. L. L., Carvalho Filho, M. R., Miller, L. O., Oliveira, J. C. & Chagas Junior, A. F. (2017a). O. Bacillus subtilis e Trichoderma spp. no incremento da biomassa em plantas de soja, feijão-caupi, milho e arroz. Agri-Environmental Sciences, 03(2), 10-18.

Chagas, L. F. B., Chagas Junior, A. F. & Castro, H. G. (2017b). Phosphate solubilization capacity and indole acetic acid production by Trichoderma strains for biomass increase on basil and mint plants. Brazilian Journal of Agriculture, 92(2), 176-185.

Chagas, L. F. B., Chagas Junior, A. F., Soares, L. P. & Fidelis, R. R. (2017c). Trichoderma na promoção do crescimento vegetal. Revista de Agricultura Neotropical, 4(3), 97-102.

Chagas junior, A. F., Oliveira, A. G., Santos, G. R., Reis, H. B., Chagas, L. F. B. & Miller, L. O. (2015). Combined inoculation of rhizobia and Trichoderma spp. on cowpea in the savanna, Gurupi-TO, Brazil. Revista Brasileira de Ciências Agrárias, 10(1), 27-33.

Chagas Junior, A. F., Chagas, L. F. B., Miller, L. O. & Oliveira, J. C. (2019a). Efficiency of Trichoderma asperellum UFT 201 as plant growth promoter in soybean. African Journal of Agricultural Research, 14(5), 263-271.

Chagas Junior, A. F., Chagas, L. F. B., Colonia, B. S. O., Miller, L. O. & Oliveria, J. C. (2019b). Trichoderma asperellum (UFT201) functions as a growth promoter for soybean plant. African Journal of Agricultural Research, 14(33), 1772-1777.

Contreras-Cornejo, H. A., Macías-Rodríquez, L., Cortés-Penagos, C. & López-Bucio, J. (2009). Trichoderma virens, a plant bene- ficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology, 149(3), 1579-1592.

Contreras-Cornejo, H. A., Macías-Rodríquez, L., Del-Val, E. & Larsen, J. (2016). Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology, 92, 1-17.

Das, T., Mahapatra, S. & Das, S. (2017). In vitro compatibility study between the Rhizobium and native Trichoderma isolates from lentil rhizospheric soil. International Journal of Current Microbiology and Applied Sciences, 6(8), 1757-1769.

Domínguez, S., Rubio, M. B., Cardoza, R. E., Gutiérrez, S., Nicolás, C., Bettiol, W., Hermosa, R. & Monte, E. (2016). Nitrogen metabolism and growth enhancement in tomato plants challenged with Trichoderma harzianum expressing the Aspergillus nidulans acetamidase amdS gene. Frontiers in Microbiology, 7, 1182.

Embrapa. (2011). Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. 2. ed. Rio de Janeiro: EMBRAPA - CNPS.

Ferreira, D.F. (2019). Sisvar: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(4), 529-535.

Fraceto, L. F., Maruyama, C. R., Guilger-Casagrande, M., Bilesky-José, N. & Lima, R. (2019). Uso de micro e nanotecnologia com Trichoderma. In: Meyer, M. C., Mazaro, S. M. & Silva, J. C. (Eds.). Trichoderma: Uso na Agricultura. Brasília, DF: Embrapa.

Gava, C. A. T. & Menezes, M. E. L. (2012). Eficiência de isolados de Trichoderma spp no controle de patógenos de solo em meloeiro amarelo. Revista Ciência Agronômica, 43(4), 633-640.

Guzmán-Guzmán, P., Porras-Troncoso, M. D., Olmedo-Monfil, V. & Herrera-Estrella, A. (2019). Trichoderma species: versatile plant symbionts. Phytopathology, 109(1), 6-16.

Machado, D. F. M., Parzianello, R. F., Silva, A. C. F. & Antoniolli, Z. I. (2012). Trichoderma no Brazil: O Fungo e Bioagente. Revista de Ciências Agrárias, 35(1), 274-288.

Mascarin, G. M., Matsumura, A. T. S., Weiler, C. A., Kobori, N. N., Silva, M. E., Berlitz, D. L. & Matsumura, A. S. (2019). Produção industrial de Trichoderma. In: Meyer, M. C., Mazaro, S. M. & Silva, J. C. (Eds.). Trichoderma: Uso na Agricultura. Brasília, DF: Embrapa.

Martínez, B., Infante, D. & Reyes, Y. (2013). Trichoderma spp. y su función em el control de plagas em los cultivos. Revista de Protección Vegetal, 28(1), 1-11.

Mendoza-Mendoza, A., Zaid, R., Lawry, R., Hermosa, R., Monte, E., Horwitz, B. A. & Mukherjee, P. K. (2018). Molecular dialogues between Trichoderma and roots: role of the fungal secretome. Fungal Biology Reviews, 32(2), 62-85.

Mertz, L. M., Henning, F. A. & Zimmer, P. D. (2009). Bioprotetores e fungicidas químicos no tratamento de sementes de soja. Ciência Rural, 39, 13-18.

Monte, B. H., Bettiol, E. & Hermosa, R. (2019). Trichoderma e seus mecanismos de ação para o controle de doenças de plantas. In: Meyer, M. C., Mazaro, S. M. & Silva, J. C. (Eds.). Trichoderma: Uso na Agricultura. Brasília, DF: Embrapa.

Mukherjee, P. K., Horwitz, B. A. & Kenerley, C. M. (2012). Secondary metabolism in Trichoderma – a genomic perspective. Microbiology, 158(1), 35-45.

Patil, A. S., Patil, S. R. & Paikrao, H. M. (2016). Trichoderma secondary metabolites: their biochemistry and possible role in disease management. In: Choudhary, D. K. & Varma, A. (Eds.). Microbial-mediated induced systemic resistance in plants. Singapore: Springer.

Plessis, I. L., Druzhinina, I. S., Atanasova, L., Yarden, O. & Jacobs, K. (2018). The diversity of Trichoderma species from soil in South Africa, with five new additions. Mycologia, 110(3).

Pomella; A. W. V. & Ribeiro, R. T. S. (2009). Controle biológico com Trichoderma em grandes culturas – uma visão empresarial. In: Bettiol, W. & Morandi, M. A. B. (Eds.). Biocontrole de doenças de plantas: uso e perspectivas. Jaguariúna: Embrapa Meio Ambiente.

Qin, W. T. & Zhuang, W. Y. (2016). Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride clade. Scientific Reports, 6, 27074.

Ramada, M. H. S., Lopes, F. A. C. & Ulhoa, C. J. (2019). Trichoderma: metabólitos secundários. In: Meyer, M. C., Mazaro, S. M. & Silva, J. C. (Eds.). Trichoderma: Uso na Agricultura. Brasília, DF: Embrapa.

Rubio, M. B., Hermosa, R., Vicente, R., Gómez-Acosta, F. A., Morcuende, R., Monte, E. & Bettiol, W. (2017). The combination of Trichoderma harzianum and chemical fertilization leads to the deregulation of phytohormone networking, preventing the adaptive responses of tomato plants to salt stress. Frontiers in Plant Science, 8, 294.

Samolski, I., Rincón, A. M., Pinzón, L. M., Viterbo, A. & Monte, E. (2012). The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology, 158(1), 129-138.

Shoresh, M., Harman, G. E. & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review Phytopathology, 48, 21-43.

Suassuna, N. D., Silva, J. C. & Bettiol, W. (2019). Uso do Trichoderma na cultura do algodão. In: Meyer, M. C., Mazaro, S. M. & Silva, J. C. (Eds.). Trichoderma: Uso na Agricultura. Brasília, DF: Embrapa.

Vargas, W. A., Mandawe, J. C. & Kenerley, C. M. (2009). Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiology, 151(2), 792-808.

Vemmer, M. & Patel, A. V. (2013). Review of encapsulation methods suitable for microbial biological control agents. Biological Control, 67(3), 380-389.

Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Ruocco, M., Wood, S. & Lorito, M. (2012). Trichoderma secondary metabolites that affect plant metabolism. Natural Product Communications, 7(11), 1545-1550.

Woo, S. L. & Pepe, O. (2018). Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1801.

Published

01/04/2022

How to Cite

CHAGAS JUNIOR, A. F.; SOUZA, M. C. .; MARTINS, A. L. L. .; LIMA, C. A. .; SOUSA, K. Ângela O. de .; SANTANA, P. A. A. C. P. .; LOPES, M. B.; CHAGAS, L. F. B. . Efficiency of Trichoplus (Trichoderma asperellum) as a plant growth promoter in soybean in the Cerrado field. Research, Society and Development, [S. l.], v. 11, n. 5, p. e16111527970, 2022. DOI: 10.33448/rsd-v11i5.27970. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27970. Acesso em: 9 jan. 2025.

Issue

Section

Agrarian and Biological Sciences