In vitro rhizogenesis of Ananas comosus var. erectifolius under influence of synthetic auxins
DOI:
https://doi.org/10.33448/rsd-v11i5.28055Keywords:
Bromeliaceae; Natural fibers; In vitro rooting; Naphthalene acetic acid; Indole butyric acid.Abstract
Ananas comosus var. erectifolius is a bromeliad native of the Amazon Complex has aroused great interest of the industries due to a softness, strength and low density of fibers extracted from its leaves. The frequent demand and effective protocols for in vitro regeneration and establishment of species, of commercial and environmental interest, encourages studies of organogenesis induced by growth regulators. The rhizogenesis or in vitro rooting is the last step of the regeneration process and is often considered the greatest challenge to be overcome. Rhizogenesis of Ananas comosus var. erectifolius was evaluated under the influence of the growth regulators naphthalene acetic acid (NAA) and indole butyric acid (IBA). Seven experiments were performed using different concentrations of growth regulators on solid MS medium under controlled environmental conditions. The results will improve the laboratorial protocols of induction, multiplication, elongation and production of root biomass for A. comosus var. erectifolius. The in vitro rooting was feasible and better results were observed using 1.0 mg L-1 NAA + 1.0 mg L-1 IBA.
References
Adeoye, B. A., Lawyer, E. F., Hassan, K. O., Ilesanmi, A. O., Richard-Olebe, T. C., Oyedeji, T. T., Aderemi, T. A., Ajongbolo, F. B., & Adedeji, A. A. (2020). Optimization of Plant Growth Regulator (PGR) on in vitro propagation of pineapple (Ananas comosus (L.) var. Smooth Cayenne. International Journal of Recent Research in Life Sciences, 7(1), 13-20.
Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M. R., & Hoque, M. E. (2015). A review on pineapple leaves fiber and its composites. International Journal of Polymer Science, 2015(1), 1-16. doi.org/10.1155/2015/950567
Bollmark, M. & Eliasson, L. (1986). Effects of exogenous cytokinins on root formation in pea cuttings. Physiology Plants, 68(1), 662–666.
Cacaï, G. H. T., Ahokpossi, B. A. M., Houédjissin, S. S., Houngue, J. A., Badou, B. T., Ahanhanzo, C. (2021). Plant regeneration through somatic embryogenesis in two cultigroups of pineapple (Ananas comosus L.). Research Square, 1-18. DOI: 10.21203/rs.3.rs-244247/v1
Dhurve, L., Kumar, K. A., Bhaskar, J., Sobhana, A., Francies, R. M., & Mathew, D. (2021). Wide variability among the ‘Mauritius’ somaclones demonstrates somaclonal variation as a promising improvement strategy in pineapple (Ananas comosus L.). Plant Cell Tissue Organ Culture, 145(1), 701-705. doi.org/10.1007/s11240-021-02022-5
Fernando, Y., Harahap, F., Diky S., & Rosmayati, D. (2020). In Vitro Propagation of Pineapple (Ananas comosus L.) Shoots from Sipahutar North Sumatera Indonesia. The International Conference on Sciences and Technology Applications Journal of Physics, 1485, 1-9. doi:10.1088/1742-6596/1485/1/012042
Gato, A. M. G., Silva, D., Ferreira, F. F., Pinheiro, E. N., Rodrigues, D. C., Assunção, L. M., Silva, E. L., & Marinho, V. R. P. (2019). Efeitos de diferentes reguladores de crescimento na produção de mudas micropropagadas de Ananas erectifolius L.B. Sm. Scientia Amazonia, 8(3), 1-7.
Garcia, C. W., Machado, I. S., Almeida, B. O., & Arcalá, L. F. L. (2010). Balanços de fontes nitrogenadas amoniacais e nítricas na micropropagação de curauá. Revista Brasileira de Oleaginosas e Fibrosas, 14(1), 125-133.
Grattapaglia, D. & Machado, M. A. Micropropagação. In: Torres, A. C., Caldas, L. S., Buso, J. A. (1998). Cultura de tecidos e transformação genética de plantas. Brasília: Embrapa.
Hinojosa, G. F. Auxinas. In: Barrueto Cid, L. P. (2000). Introdução dos hormônios vegetais. Brasília: Embrapa Recursos Genéticos e Biotecnologia.
Kornatskiy, S. A. (2020). Pineapple micropropagation (Ananas comosus L. Smooth Cayenne) and plant growth features in the process of adaptation in hydroponics. Journal of Critical Reviews, 7(8), 3228-3234.
Kuroha, T., Kato, H., Asami, T., Yoshida, S., Kamada, H., & Satoh, S. (2002). A trans-zeatin riboside in root xylem sap negatively regulates adventitious root formation on cucumber hypocotyls. Journal Experimental Botany, 53(1), 2193–2200.
Kuroha, T., Ueguchi, C., Sakakibara, H., & Satoh, S. (2006). Cytokinin Receptors are required for normal development of auxin-transporting vascular tissues in the hypocotyl but not in adventitious roots. Plant and Cell Physiology, 47(2), 234-243.
Leão, A. L., Caraschi, J. C., & Tan, I. H. Curaua fiber - a tropical natural fibers from Amazon potential and applications in composites. In: Mattoso, L.H.C., Leão, A.L., & Frollini, E. (2000). Natural Polymers and Agrofibers Bases Composites. São Carlos: Embrapa Instrumentação Agropecuária.
Leão, A. L., Machado, I. S., Souza, S., & Soriano, L. (2009). Production of curaua (Ananas erectifolius LB Smith) fibers for industrial applications: characterization and micropropagation. Acta Horticulturae, 822(1), 227-238.
Liu, C., Zhang, W., & He, Y. (2022). The complete chloroplast genome of Ananas comosus var. erectifolius (L.B. Smith) Coppens & Leal. Resources. Mitochondrial DNA B Resources, 7(3), 431-433.
Macedo, C. E. C., Silva, M. G., Nobrega, F. S., Martins, P. M., Barroso, P. A. V., & Alloufa, M. A. I. (2003). Concentrações de ANA e BAP na micropropagação de abacaxizeiro L. Merrill (Ananas comosus) e no cultivo hidropônico das plântulas obtidas in vitro. Revista Brasileira de Fruticultura, 25(1), 501-504.
Machado, I. S., Gomes, A. C., Bertozzo, F., Soriano, L., & Arcala, L. F. L. (2009). Induction of callus formation in in vitro curaua meristems. Revista Brasileira de Oleaginosas e Fibrosas, 13(1), 83-90.
Martins, J. P. R., Rodrigues, L. C. A., Silva, T. S., Gontijo, A. B. P,L., & Falqueto, A. R. (2020). Modulation of the anatomical and physiological responses of in vitro grown Alcantarea imperialis induced by NAA and residual effects of BAP. Ornamental Horticulture, 26(2), 283-297.
Martins, J. P. R., Schimildt, E. R., Alexandre, R. S., Santos, B. R., & Magevski, G. C. (2013). Effect of synthetic auxins on in vitro and ex vitro bromeliad rooting. Pesquisa Agropecuária Tropical, 43(2),138-146.
Mendes, G. C., Soares, C. Q. G., Braga, V. F., Pinto, L. C., Santana, R., Viccini, L. F., & Peixoto, P. H. P. (2007). Enraizamento in vitro de Vriesea cacuminis L. B. Smith (Bromeliaceae) do Parque Estadual do Ibitipoca, Minas Gerais, Brasil. Revista Brasileira de Biociências, 5(2), 969-971.
Moraes, A. M., Almeida, F. A. C., Bruno, R. L. A., Cazé Filho, J., Nunes, S.T., & Gomes, J.P. (2010). Micropropagação de abacaxizeiro cv. Emepa 1. Revista Brasileira de Engenharia Agrícola e Ambiental, 14(9), 932-936.
Mothé, C. G. & Araújo, C. R. (2004). Caracterização térmica e mecânica de compósitos de poliuretano com fibras de curauá. Polímeros: Ciência e Tecnologia, 14(4), 274-278.
Murashige, T. S. & Skoog, F. A. (1962). Revised medium for rapid growth bioassays with tobacco tissue cultures. Physiologia Plantarum, 15(1), 473-497.
Pasqual, M. (2001). Cultura de tecidos. Lavras: UFLA/FAEPE.
Pierik, R. L. M., Steegmans, H. H. M., & Hendriks, J. (1984). The influence of naphthaleneacetic acid on the growth of in vitro cultivated seedling of Bromeliaceae. Scientia Horticulturae, 24(1), 193-199.
Pineda, A., Vargas, T. E., Escala, M., & García, E. (2012). Organogenesis in vitro in pineapple ‘Red Spanish’ and foliar morpho-anatomy of plants obtained in the process. Bioagro, 24(3), 175-186.
Oliveira, Y., Anselmini, J. I., Cuquel, F. L., Pinto, F., & Quoirin, M. (2010). Pré-aclimatização in vitro de abacaxi ornamental. Ciência e Agrotecnologia, 34(1), 1647-1653.
Sani, L. A., Usman, I. S., Nasir, A. U. & Abdulmalik, M. M. (2019). Micropropagation of pineapple (Ananas comosus L. var. Smooth Cayenne) in temporary immersion bioreactor system (TIPS). Bayero Journal of Pure and Applied Sciences, 12(2), 207-209.
Sena Neto, A. R. S., Claro, P. I. C., Souza, F. V. D., Mattoso, L. H. C., & Marconcini, J. M. (2017). Poly (lactic acid) composites reinforced with leaf fibers from ornamental variety of hybrid pineapple (Potyra). Polymer Composites, 38(1), 1228-1235.
Sena Neto, A. R., Araujo, M. A. M., Barboza, R. M. P., Fonseca, A. S., Tonoli, G. H. D., Souza, F. V. D., Mattoso, L. H. C., & Marconcini, J. M. (2015). Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Industrial Crops and Products, 64(1), 68-78.
Souza, C. P. F., Ferreira, C. F., Souza, E. H., Sena Neto, A. R., Marconcini, J. M., Ledo, C. A. S., & Souza, F. V. D. (2017). Genetic diversity and ISSR marker association with the quality of pineapple fiber for use in industry. Industrial Crops and Products, 104(1), 263-268.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Leonardo Soriano; Carolina Rossi de Oliveira; Fabiana Rezende Muniz; Isaac Stringueta Machado
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.