Modeling and experimental optimization in the evaluation of chemical interactions of chitosan/polyvinylpyrrolidone mixtures
DOI:
https://doi.org/10.33448/rsd-v11i5.28063Keywords:
Chitosan; Polyvinylpyrrolidone; Chemical interactions; Optimization; Mixtures.Abstract
Polymeric biomaterials stand out due to their great flexibility in adapting their physical, chemical, mechanical, biological properties, processability and the possibility of using them in different situations. Among the various polymers, chitosan and polyvinylpyrrolidone are promising for the development of dressings, however, they have limitations of properties individually that can be optimized when combined. Therefore, this research seeks to evaluate the chemical interactions of PVP/Chitosan mixtures at different concentrations and mass proportions, through modeling and experimental optimization applying the response surface methodology (MSR) from spectroscopy in the Fourier Transform Infrared Spectroscopy (FTIR) of pure polymers. From the FTIR spectra of the pure polymers, the characteristic functional groups of both polymers were observed, which are consistent with the literature. Through the applied linear model, the chemical interactions between chitosan and PVP K — 90 in the different proportions and concentrations of the polymers were determined, and using the MSR with a central composite model, the behavior of the interaction in the mixture was verified for the different conditions and how the proportion of mass in the mixture and the concentration influences. In view of the study, it is observed that the simulation of chemical interaction of the polymeric mixture considering the linear model and using the central composite model of response surface methodology was satisfactory. Experimental optimization from modeling is promising for understanding the behavior of the mixture, helping to develop combinations and predictions of interactions, as well as enabling an improvement in practical experiments.
References
Bianco, G., Soldi, M. S., Pinheiro, E. A., Pires, A. T. N., Gehlen, M. H., & Soldi, V. (2003). Thermal stability of poly ( N -vinyl-2-pyrrolidone-co-methacrylic acid ) copolymers in inert atmosphere. Polymer Degradation and Stability, 80, 567–574. https://doi.org/10.1016/S0141-3910(03)00053-3
Bispo, V. M., Mansur, A. A. P., & Mansur, H. S. (2009). Caracterização por Espectroscopia de Infravermelho de Filmes de Quitosana com Diferentes Quantidades de Agente Reticulante. Congresso Brasileiro de Polímeros, 1–10. https://www.ipen.br/biblioteca/cd/cbpol/2009/PDF/297.pdf
Brant, A. J. C. (2008). Preparação e Caracterização de Hidrogéis a partir de Misturas de Soluções de Quitosana e Poli(N-vinil-2-pirrolidona). UNIVERSIDADE DE SÃO PAULO.
Chen, J. P., Kuo, C. Y., & Lee, W. L. (2012). Thermo-responsive wound dressings by grafting chitosan and poly(N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics. Applied Surface Science, 262, 95–101. https://doi.org/10.1016/j.apsusc.2012.02.106
Consendey, M. E. E., Celestino, G. de G., Shiguihara, A. L., & Junior, J. A. (2021). Preparo e caracterização de blendas de PVP/PAADDA / Preparation and characterizaion of PVP/PAADDA blends. Brazilian Journal of Development, 7(10), 95067–95080. https://doi.org/10.34117/bjdv7n10-18
Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings : A review. Materials Science & Engineering C, 33(4), 1819–1841. https://doi.org/10.1016/j.msec.2013.01.010
Fang, L., & Goh, S. H. (2000). Miscible chitosan/tertiary amide polymer blends. Journal of Applied Polymer Science, 76(12), 1785–1790.
Ferreira, A. C., Diniz, M. F., Babetto Ferreira, A. C., Sanches, N. B., & da Costa Mattos, E. (2020). FT-IR/UATR and FT-IR transmission quantitative analysis of PBT/PC blends. Polymer Testing, 85(February). https://doi.org/10.1016/j.polymertesting.2020.106447
Franco, P., & De Marco, I. (2020). The use of poly(N-vinyl pyrrolidone) in the delivery of drugs: A review. Polymers, 12(5), 18–21. https://doi.org/10.3390/POLYM12051114
Franco, P. Q., Silva, J., & Borges, J. P. (2010). Produção de Fibras de Hidroxiapatite por Electrofiação. Ciência & Tecnologia Dos Materiais, 22(1/2), 57–64.
Grant, J. J., Pillai, S. C., Perova, T. S., Hehir, S., Hinder, S. J., McAfee, M., & Breen, A. (2021). Electrospun fibres of chitosan/PVP for the effective chemotherapeutic drug delivery of 5-fluorouracil. Chemosensors, 9(4), 1–19. https://doi.org/10.3390/chemosensors9040070
Kou, S. (Gabriel), Peters, L. M., & Mucalo, M. R. (2021). Chitosan: A review of sources and preparation methods. In International Journal of Biological Macromolecules (Vol. 169). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2020.12.005
Kurakula, M., & Rao, G. S. N. K. (2020). Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. Journal of Drug Delivery Science and Technology, 60(September), 102046. https://doi.org/10.1016/j.jddst.2020.102046
Morariu, S., Bercea, M., Teodorescu, M., & Avadanei, M. (2016). Tailoring the properties of poly(vinyl alcohol)/poly(vinylpyrrolidone) hydrogels for biomedical applications. European Polymer Journal, 84, 313–325. https://doi.org/10.1016/j.eurpolymj.2016.09.033
Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., & de la Caba, K. (2017). Chitosan as a bioactive polymer: Processing, properties and applications. International Journal of Biological Macromolecules, 105, 1358–1368. https://doi.org/10.1016/j.ijbiomac.2017.07.087
Oliveira, M. Z. F. da S., Fernandes, T. S. M., & Carvalho, T. V. (2021). Síntese e caracterização de beads de quitosana comercial reticulados com glutaraldeído. Revista Materia, 26(2). https://doi.org/10.1590/S1517-707620210002.1261
Pires, A. L. R., Bierhalz, A. C. K., & Moraes, Â. M. (2015). Biomaterials: Types, Applications, and Market. Química Nova, 38(7), 957–971. https://doi.org/10.5935/0100-4042.20150094
Prashanth, K. V. H., & Tharanathan, R. N. (2007). Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends in Food Science & Technology, 18(3), 117–131.
Rahma, A., Munir, M. M., Khairurrijal, Prasetyo, A., Suendo, V., & Rachmawati, H. (2016). Intermolecular Interactions and the Release Pattern of Electrospun Curcumin-Polyvinyl(pyrrolidone) Fiber. Biological and Pharmaceutical Bulletin, 39(2), 163–173. https://doi.org/10.1248/bpb.b15-00391
Raut, H. K., Das, R., Liu, Z., Liu, X., & Ramakrishna, S. (2020). Biocompatibility of Biomaterials for Tissue Regeneration or Replacement. Biotechnology Journal, 15(12), 1–14. https://doi.org/10.1002/biot.202000160
Regu, T., Ambika, C., Karuppasamy, K., Rajan, H., Vikraman, D., Jeon, J., Kim, H., & Raj, T. A. B. (2019). Proton transport and dielectric properties of high molecular weight polyvinylpyrrolidone ( PVP K90 ) based solid polymer electrolytes for portable electrochemical devices. Journal of Materials Science: Materials in Electronics, 30(12), 11735–11747. https://doi.org/10.1007/s10854-019-01535-2
Rigoli, P. S., Murakami, L. M. S., Diniz, M. F., Azevedo, M. F. P., Cassu, S. N., Mattos, E. da C., & Dutra, R. de C. L. (2019). Quantification of aerospace polymer blends by thermogravimetric analysis and infrared spectrometry. Journal of Aerospace Technology and Management, 11, 1–12. https://doi.org/10.5028/jatm.v11.986
Rinaudo, M., & Ã, M. R. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001
Santos, F. dos, Costa, R. R. C. da, & Ikegami, R. A. (2020). Caracterização Do Comportamento Mecânico No Ensaio De Flexão De Uma Blenda Polimérica De Poliestireno/ Characterization of the Mechanical Behaviour in the Bending Test of a Polystyrene Polymeric Blend. Brazilian Journal of Development, 6(10), 78504–78513. https://doi.org/10.34117/bjdv6n10-327
Silva, M. C., Nascimento, I., Ribeiro, V. S., & Fook, M. V. L. (2016). Evaluation of the obtaining method of chitosan/ curcumin scaffolds on the structure, morphology and thermal properties | Avaliação do método de obtenção de scaffolds quitosana/curcumina sobre a estrutura, morfologia e propriedades térmicas. Revista Materia, 21(3), 560–568.
Sobreira, T. G. P., Silva, L. A. da, Menezes, F. D. de, França, E. J., & Aquino, K. A. da S. (2020). Aspectos Estruturais de Esferas de Quitosana/PVA Reticuladas com Glutaraldeído Submetidas a Diferentes Tratamentos Térmicos. Quimica Nova, 43(9), 1251–1257. https://doi.org/http://dx.doi.org/10.21577/0100-4042.20170613
Spiegel, S. (2018). Recent advances in applied polymer science. In Journal of Applied Polymer Science (Vol. 135, Issue 24). https://doi.org/10.1002/app.46279
Swathi, P. H., V., A. M., Suresh, S., Guin, J. P., S, N. M., Kanni, P., Varshney, L., N, S. H., & To. (2020). Effect of Gamma Sterilization on the Properties of Microneedle Array Transdermal Patch System. Drug Development and Industrial Pharmacy, 0(0), 000. https://doi.org/10.1080/03639045.2020.1742144
Teodorescu, M., Bercea, M., & Morariu, S. (2019). Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnology Advances, 37(1), 109–131. https://doi.org/10.1016/j.biotechadv.2018.11.008
Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941–2953. https://doi.org/10.1016/j.biomaterials.2008.04.023
Wladymyr, J. B. S., Cardoso, M. J. B., Almeida, K. V, Nascimento, E. P., Farias, K. A. S., & Fook, M. V. L. (2013). Desenvolvimento de compósitos a base de quitosana / fosfato de cálcio. Revista Eletrônica de Materiais e Processos, 8.3, 136–140.
Zarrintaj, P., Saeb, M. R., Jafari, S. H., & Mozafari, M. (2019). Application of compatibilized polymer blends in biomedical fields. In Compatibilization of Polymer Blends: Micro and Nano Scale Phase Morphologies, Interphase Characterization, and Properties. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816006-0.00018-9
Zidan, H. M., Abdelrazek, E. M., Abdelghany, A. M., & Tarabiah, A. E. (2019). Characterization and some physical studies of PVA/PVP filled with MWCNTs. Journal of Materials Research and Technology, 8(1), 904–913. https://doi.org/10.1016/j.jmrt.2018.04.023
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Keilly Grangeiro Wanderley; Bruna Giovanna Barbosa dos Santos; Kleilton Oliveira Santos; Wladymyr Jefferson Bacalhau de Sousa; Pedro Carlos de Assis Júnior; Márcio José Batista Cardoso; Marcus Vinícius Lia Fook
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.