Modeling and experimental optimization in the evaluation of chemical interactions of chitosan/polyvinylpyrrolidone mixtures

Authors

DOI:

https://doi.org/10.33448/rsd-v11i5.28063

Keywords:

Chitosan; Polyvinylpyrrolidone; Chemical interactions; Optimization; Mixtures.

Abstract

Polymeric biomaterials stand out due to their great flexibility in adapting their physical, chemical, mechanical, biological properties, processability and the possibility of using them in different situations. Among the various polymers, chitosan and polyvinylpyrrolidone are promising for the development of dressings, however, they have limitations of properties individually that can be optimized when combined. Therefore, this research seeks to evaluate the chemical interactions of PVP/Chitosan mixtures at different concentrations and mass proportions, through modeling and experimental optimization applying the response surface methodology (MSR) from spectroscopy in the Fourier Transform Infrared Spectroscopy (FTIR) of pure polymers. From the FTIR spectra of the pure polymers, the characteristic functional groups of both polymers were observed, which are consistent with the literature. Through the applied linear model, the chemical interactions between chitosan and PVP K — 90 in the different proportions and concentrations of the polymers were determined, and using the MSR with a central composite model, the behavior of the interaction in the mixture was verified for the different conditions and how the proportion of mass in the mixture and the concentration influences. In view of the study, it is observed that the simulation of chemical interaction of the polymeric mixture considering the linear model and using the central composite model of response surface methodology was satisfactory. Experimental optimization from modeling is promising for understanding the behavior of the mixture, helping to develop combinations and predictions of interactions, as well as enabling an improvement in practical experiments.

References

Bianco, G., Soldi, M. S., Pinheiro, E. A., Pires, A. T. N., Gehlen, M. H., & Soldi, V. (2003). Thermal stability of poly ( N -vinyl-2-pyrrolidone-co-methacrylic acid ) copolymers in inert atmosphere. Polymer Degradation and Stability, 80, 567–574. https://doi.org/10.1016/S0141-3910(03)00053-3

Bispo, V. M., Mansur, A. A. P., & Mansur, H. S. (2009). Caracterização por Espectroscopia de Infravermelho de Filmes de Quitosana com Diferentes Quantidades de Agente Reticulante. Congresso Brasileiro de Polímeros, 1–10. https://www.ipen.br/biblioteca/cd/cbpol/2009/PDF/297.pdf

Brant, A. J. C. (2008). Preparação e Caracterização de Hidrogéis a partir de Misturas de Soluções de Quitosana e Poli(N-vinil-2-pirrolidona). UNIVERSIDADE DE SÃO PAULO.

Chen, J. P., Kuo, C. Y., & Lee, W. L. (2012). Thermo-responsive wound dressings by grafting chitosan and poly(N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics. Applied Surface Science, 262, 95–101. https://doi.org/10.1016/j.apsusc.2012.02.106

Consendey, M. E. E., Celestino, G. de G., Shiguihara, A. L., & Junior, J. A. (2021). Preparo e caracterização de blendas de PVP/PAADDA / Preparation and characterizaion of PVP/PAADDA blends. Brazilian Journal of Development, 7(10), 95067–95080. https://doi.org/10.34117/bjdv7n10-18

Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings : A review. Materials Science & Engineering C, 33(4), 1819–1841. https://doi.org/10.1016/j.msec.2013.01.010

Fang, L., & Goh, S. H. (2000). Miscible chitosan/tertiary amide polymer blends. Journal of Applied Polymer Science, 76(12), 1785–1790.

Ferreira, A. C., Diniz, M. F., Babetto Ferreira, A. C., Sanches, N. B., & da Costa Mattos, E. (2020). FT-IR/UATR and FT-IR transmission quantitative analysis of PBT/PC blends. Polymer Testing, 85(February). https://doi.org/10.1016/j.polymertesting.2020.106447

Franco, P., & De Marco, I. (2020). The use of poly(N-vinyl pyrrolidone) in the delivery of drugs: A review. Polymers, 12(5), 18–21. https://doi.org/10.3390/POLYM12051114

Franco, P. Q., Silva, J., & Borges, J. P. (2010). Produção de Fibras de Hidroxiapatite por Electrofiação. Ciência & Tecnologia Dos Materiais, 22(1/2), 57–64.

Grant, J. J., Pillai, S. C., Perova, T. S., Hehir, S., Hinder, S. J., McAfee, M., & Breen, A. (2021). Electrospun fibres of chitosan/PVP for the effective chemotherapeutic drug delivery of 5-fluorouracil. Chemosensors, 9(4), 1–19. https://doi.org/10.3390/chemosensors9040070

Kou, S. (Gabriel), Peters, L. M., & Mucalo, M. R. (2021). Chitosan: A review of sources and preparation methods. In International Journal of Biological Macromolecules (Vol. 169). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2020.12.005

Kurakula, M., & Rao, G. S. N. K. (2020). Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. Journal of Drug Delivery Science and Technology, 60(September), 102046. https://doi.org/10.1016/j.jddst.2020.102046

Morariu, S., Bercea, M., Teodorescu, M., & Avadanei, M. (2016). Tailoring the properties of poly(vinyl alcohol)/poly(vinylpyrrolidone) hydrogels for biomedical applications. European Polymer Journal, 84, 313–325. https://doi.org/10.1016/j.eurpolymj.2016.09.033

Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., & de la Caba, K. (2017). Chitosan as a bioactive polymer: Processing, properties and applications. International Journal of Biological Macromolecules, 105, 1358–1368. https://doi.org/10.1016/j.ijbiomac.2017.07.087

Oliveira, M. Z. F. da S., Fernandes, T. S. M., & Carvalho, T. V. (2021). Síntese e caracterização de beads de quitosana comercial reticulados com glutaraldeído. Revista Materia, 26(2). https://doi.org/10.1590/S1517-707620210002.1261

Pires, A. L. R., Bierhalz, A. C. K., & Moraes, Â. M. (2015). Biomaterials: Types, Applications, and Market. Química Nova, 38(7), 957–971. https://doi.org/10.5935/0100-4042.20150094

Prashanth, K. V. H., & Tharanathan, R. N. (2007). Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends in Food Science & Technology, 18(3), 117–131.

Rahma, A., Munir, M. M., Khairurrijal, Prasetyo, A., Suendo, V., & Rachmawati, H. (2016). Intermolecular Interactions and the Release Pattern of Electrospun Curcumin-Polyvinyl(pyrrolidone) Fiber. Biological and Pharmaceutical Bulletin, 39(2), 163–173. https://doi.org/10.1248/bpb.b15-00391

Raut, H. K., Das, R., Liu, Z., Liu, X., & Ramakrishna, S. (2020). Biocompatibility of Biomaterials for Tissue Regeneration or Replacement. Biotechnology Journal, 15(12), 1–14. https://doi.org/10.1002/biot.202000160

Regu, T., Ambika, C., Karuppasamy, K., Rajan, H., Vikraman, D., Jeon, J., Kim, H., & Raj, T. A. B. (2019). Proton transport and dielectric properties of high molecular weight polyvinylpyrrolidone ­ ( PVP K90 ) based solid polymer electrolytes for portable electrochemical devices. Journal of Materials Science: Materials in Electronics, 30(12), 11735–11747. https://doi.org/10.1007/s10854-019-01535-2

Rigoli, P. S., Murakami, L. M. S., Diniz, M. F., Azevedo, M. F. P., Cassu, S. N., Mattos, E. da C., & Dutra, R. de C. L. (2019). Quantification of aerospace polymer blends by thermogravimetric analysis and infrared spectrometry. Journal of Aerospace Technology and Management, 11, 1–12. https://doi.org/10.5028/jatm.v11.986

Rinaudo, M., & Ã, M. R. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

Santos, F. dos, Costa, R. R. C. da, & Ikegami, R. A. (2020). Caracterização Do Comportamento Mecânico No Ensaio De Flexão De Uma Blenda Polimérica De Poliestireno/ Characterization of the Mechanical Behaviour in the Bending Test of a Polystyrene Polymeric Blend. Brazilian Journal of Development, 6(10), 78504–78513. https://doi.org/10.34117/bjdv6n10-327

Silva, M. C., Nascimento, I., Ribeiro, V. S., & Fook, M. V. L. (2016). Evaluation of the obtaining method of chitosan/ curcumin scaffolds on the structure, morphology and thermal properties | Avaliação do método de obtenção de scaffolds quitosana/curcumina sobre a estrutura, morfologia e propriedades térmicas. Revista Materia, 21(3), 560–568.

Sobreira, T. G. P., Silva, L. A. da, Menezes, F. D. de, França, E. J., & Aquino, K. A. da S. (2020). Aspectos Estruturais de Esferas de Quitosana/PVA Reticuladas com Glutaraldeído Submetidas a Diferentes Tratamentos Térmicos. Quimica Nova, 43(9), 1251–1257. https://doi.org/http://dx.doi.org/10.21577/0100-4042.20170613

Spiegel, S. (2018). Recent advances in applied polymer science. In Journal of Applied Polymer Science (Vol. 135, Issue 24). https://doi.org/10.1002/app.46279

Swathi, P. H., V., A. M., Suresh, S., Guin, J. P., S, N. M., Kanni, P., Varshney, L., N, S. H., & To. (2020). Effect of Gamma Sterilization on the Properties of Microneedle Array Transdermal Patch System. Drug Development and Industrial Pharmacy, 0(0), 000. https://doi.org/10.1080/03639045.2020.1742144

Teodorescu, M., Bercea, M., & Morariu, S. (2019). Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnology Advances, 37(1), 109–131. https://doi.org/10.1016/j.biotechadv.2018.11.008

Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941–2953. https://doi.org/10.1016/j.biomaterials.2008.04.023

Wladymyr, J. B. S., Cardoso, M. J. B., Almeida, K. V, Nascimento, E. P., Farias, K. A. S., & Fook, M. V. L. (2013). Desenvolvimento de compósitos a base de quitosana / fosfato de cálcio. Revista Eletrônica de Materiais e Processos, 8.3, 136–140.

Zarrintaj, P., Saeb, M. R., Jafari, S. H., & Mozafari, M. (2019). Application of compatibilized polymer blends in biomedical fields. In Compatibilization of Polymer Blends: Micro and Nano Scale Phase Morphologies, Interphase Characterization, and Properties. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816006-0.00018-9

Zidan, H. M., Abdelrazek, E. M., Abdelghany, A. M., & Tarabiah, A. E. (2019). Characterization and some physical studies of PVA/PVP filled with MWCNTs. Journal of Materials Research and Technology, 8(1), 904–913. https://doi.org/10.1016/j.jmrt.2018.04.023

Published

05/04/2022

How to Cite

WANDERLEY, K. G. .; SANTOS, B. G. B. dos .; SANTOS, K. O. .; SOUSA, W. J. B. de .; ASSIS JÚNIOR, P. C. de .; CARDOSO, M. J. B. .; FOOK, M. V. L. . Modeling and experimental optimization in the evaluation of chemical interactions of chitosan/polyvinylpyrrolidone mixtures. Research, Society and Development, [S. l.], v. 11, n. 5, p. e26111528063, 2022. DOI: 10.33448/rsd-v11i5.28063. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28063. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings