Analysis of the mechanical behavior of the matrix of a cementitious composite with addition of disperse carbon nanotubes (CNTs) using ultrasound
DOI:
https://doi.org/10.33448/rsd-v11i5.28066Keywords:
Carbon nanotube; Physical properties; Porosity; High performance.Abstract
Carbon nanotubes (CNTs) have a carbon structure with a cylindrical shape with a variable diameter between 0.4 and 10 mm. As it is a very thin product, it is a material with the potential to be inserted in cementitious composites to reduce the number of voids in the mixture. This work aims to add carbon nanotubes in a cement matrix with Portland cement, evaluating the dispersion in the cured cement matrix and the impacts on its mechanical strength. Thus, samples were prepared containing different percentages of carbon nanotubes dispersed through the ultrasonic dispersion method and tests were performed for analysis. The analysis was carried out through tests of compressive strength, flexural and compressive strength, water absorption, void ratio, specific mass, water absorption by capillarity, and analysis by Scanning Electron Microscope, added to the EDS technique, at ages 7, 28 and 56 days. The results obtained in this study point to improvements with the use of nanotubes, favoring the mechanical behavior of the matrices. The process of mixing the nanotubes in the concrete additive proved to be favorable for its dispersion.
References
ABNT NBR NM 45:2006 – Agregados – Determinação da massa unitária e do volume de vazios.
ABNT NBR NM 52:2009 – Agregado miúdo – Determinação de massa específica e massa específica aparente.
ABNT NBR NM 248:2003 – Agregados – Determinação da composição granulométrica.
ABNT NBR 5739:2018 - Concreto - Ensaio de compressão de corpos de prova cilíndricos.
ABNT NBR 9778:2005 – Argamassa e concreto endurecidos – Determinação da absorção de água, índice de vazios e massa específica.
ABNT NBR 9779:2013 - Argamassa e concreto endurecidos — Determinação da absorção de água por capilaridade
ABNT NBR 13279:2005 – Argamassa para assentamento e revestimento de paredes e tetos – Determinação da resistência à tração na flexão e à compressão.
ABNT NBR 13276:2016 - Argamassa para assentamento e revestimento de paredes e tetos – Determinação do índice de consistência.
Adhikary, S.K et al. (2021) Effects of carbon nanotubes on expanded glass and silica aerogel based lightweight concrete. Scientific Reports, 11(1), 1–11
Batiston, E. R. (2012) Incorporação de nanotubos de carbono em matriz de cimento portland. 1–152
Carriço, A. et al. (2018) Durability of multi-walled carbon nanotube reinforced concrete. Construction and Building Materials, 164, 121–133.
Celadyn, W. (2016) Innovative Structural Systems. v. 1, n. International Scientific Workshops „Innovative Structural Systems in Architecture” (ISSA2016) November 3-5, 2016, Wrocław, Poland, 2016.
Collins, F., Lambert, J., & Duan, W. H. (2012) The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures. Cement and Concrete Composites, 34(2), 201–207
De Medeiros, M. H. F. et al. (2015) Compósitos de cimento Portland com adição de nanotubos de carbono (NTC): Propriedades no estado fresco e resistência à compressão. Revista Materia, 20(1), 127–144
Ferro, G. Carbon nanotube cement composites. Convegno Nazionale IGF XXI. Anais...2011
Foldyna, J., Foldyna, V., & Zelenak, M. (2016) Dispersion of carbon nanotubes for application in cement composites. Procedia Engineering, 149, 94–99
Hassan, A., Elkady, H., & Shaaban, I. G. (2019) Effect of Adding Carbon Nanotubes on Corrosion Rates and Steel-Concrete Bond. Scientific Reports, 9(1), 1–12
Henche, D. (2013) Composto Cimentício de Alta Resistência com Adição de Nanotubos de Carbono.
Hu, Y. et al. (2014) Fracture toughness enhancement of cement paste with multi-walled carbon nanotubes. Construction and Building Materials, 70, 332–338
Iijima, S. (2002) Carbon nanotubes: Past, present, and future. Physica B: Condensed Matter, 323, 1–5
Jo, B. W. et al. (2017) Strength and durability assessment of portland cement mortars formulated from hydrogen-rich water. Advances in Materials Science and Engineering.
Jung, M. et al. (2020) Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE). Cement and Concrete Research, 131, 106017
Knuth, R.D, Margarete, R.F.G, Silva, R.M.E, & Knuth, F. A. (2016) reforço em compósito de cimento portland através da adição de nanotubos de carbono de paredes múltiplas. 140–144.
Konsta-Gdoutos, M. S., Metaxa, Z. S., & Shah, S. P. (2010) Highly dispersed carbon nanotube reinforced cement based materials. Cement and Concrete Research, 40(7), 1052–1059.
Koshio, A. et al. (2001) Uma maneira simples de reagir quimicamente Nanotubos de carbono de parede simples com materiais organicos usando a ultrasonificação. 1, 361–363
Lelusz, M. (2014) Carbon nanotubes influence on the compressive strength of cement composites. Technical Transactions, v. 2014, n. Civil Engeneering Issuet 1-B (5) 5–11
Lemes, Felix. (2016) Caracterização do comportamento mecânico e térmico de argamassas de cimento portland com adição de nanotubo de carbono. Congresso Brasileiro de Engenharia e Ciência dos Materiais 06 a 10 de Novembro de 2016, Natal, RN, Brasil. 22o CBECiMat - Congresso Brasileiro de Engenharia e Ciência dos Materiais, Natal, RN, Brasil, (2), 4033–4044.
Li, H., Xiao, H. Gang, Ou, & Ping. J. (2004) A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cement and Concrete Research, 34(3), 435–438, 2004.
Liew, K. M., Kai, M. F., & Zhang, L. W. (2016) Carbon nanotube reinforced cementitious composites: An overview. Composites Part A: Applied Science and Manufacturing, 91, 301–323
Lourie, O., Cox, D. M., & Wagner, H. D. (1998) Buckling and collapse of embedded carbon nanotubes. Physical Review Letters, 81(8), 1638–1641.
Macleod, A. J. N. et al. (2019) Quantitative microstructural characterisation of Portland cement‑carbon nanotube composites using electron and x-ray microscopy. Cement and Concrete Research, 123, 105767
Makar, J. M., Margeson, J. C., & Luh, J. (2005) Carbon nanotube / cement composites - early results and potential applications. Construction, 2005.
Makar, J.M, & Beaudoin, J. J. (2007) Carbon Nanotubes and Their Application in the Construction Industry. (Institute for Research in Construction, National Research Council Canada 1200 Montreal Road, Ottawa, Ontario, 368
Marcondes, C. G. N., Medeiros, M. H. F., & Marques Filho, J., H. P. (2016) Carbon Nanotubes in Portland cement concrete: Influence of dispersion on mechanical properties and water absorption. Alconpat Journal, 5, 1–16.
Marcondes, C. (2012) Adição De Nanotubos De Carbono Em Concretos De Cimento Portland – Absorção, permeabilidade, penetração de cloretos e propriedades mecânicas. 3, 143, 2012.
Marcondes, C. (2015) Nanotubos de carbono em concreto de cimento portland: Influência da dispersão nas propriedades mecânicas e na absorção de água. Alconpat, 4, 140–156
Medeiros, M. H. F. et al. (2015) Compósitos de cimento Portland com adição de nanotubos de carbono ( NTC ): Propriedades no estado fresco e resistência à compressão Portland cement composites with carbon nanotubes ( CNT ) addition : Properties in freshly state and compressive strength. Revista Matéria, 20(1), 127–144
Mehta, P., & Monteiro, P, (2014) CONCRETO-Microestrutura- Propriedades e Materiais. v. 4, 2014.
Melo, V. S. (2009) Nanotecnologia Aplicada ao Concreto: Efeito da Mistura Física de Nanotubos de Carbono em Matrizes de Cimento Portland. 146.
Metaxa, Z. S., Konsta-Gdoutos, M. S., & Shah, S. P. (2013) Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency. Cement and Concrete Composites, 36(1), 25–32.
Mehta, P. K. et al. (2008) Microestrutura, propriedades e materiais. Microestrutura do Concreto, v. 37, n. 9, p. 21–202, 2008.
Mohsen, M. O. et al. (2019) Carbon nanotube effect on the ductility, flexural strength, and permeability of concrete. Journal of Nanomaterials, 1–12,
Parveen, S. et al. (2015) Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique. Cement and Concrete Research, 73
Saez de Ibarra, Y. et al. (2006) Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Physica Status Solidi (A) Applications and Materials Science, 203(6), 1076–1081
Shah, S. P., & Konsta-Gdoutos, M. S. (2017) Uncoupling Modulus of Elasticity and Strength. Concrete International, 39(11), 37–42.
Shi, T. et al. (2019a) Research progress on CNTs/CNFs-modified cement-based composites – A review. Construction and Building Material.
Shi, T. et al. (2019b) FTIR study on early-age hydration of carbon nanotubes-modified cement-based materials. Advances in Cement Research, 31(8), 353–361
Sobolkina, A. et al. (2012) Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cement and Concrete Composites, 34(10), 1104–1113, 2012.
Wang, B., Han, Y., & Liu, S. (2013) Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites. Construction and Building Materials, 46, 8–12
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Bruna Maria Kremer; Fernanda Pacheco; Hinoel Zamis Ehrenbring; Roberto Christ; Maria Angélica Thiele Fracassi; Maria Fernanda Oliveira; Maria Inês Fuhr
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.